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Since the start of the space conquest, almost all spacecraft have been manufactured and
assembled on the ground, then integrated into a launch vehicle for delivery into orbit. This ap-
proach imposes significant limitations on the size, volume, and design of payloads. In addition,
the size of the telescopes and antennas is intimately linked to their performance. Therefore there
is aneed for improvement of the space assembly to get rid of these limitations. With the on-orbit
assembly, the launched vehicle only embarks the modular components required for bigger and
more complex structures which are then build via a robot. Truss assembly plays an important
role when one needs to build strong and light structures. Truss allows constructing complex
structures from a simple one. It considerably reduces the amount of space and weight in the

launch vehicle.

Motion planning is a computational problem to find a sequence of valid configurations that
moves the object from the start to the goal. The idea is to find the optimal path for a robot in
its environment. In the last few decades reinforcement learning (RL) has appeared to be one of
the best ways to program robots, it provides better autonomy and reliability. Machine learning
could be considered as a new branch of optimal control theory. The main research contents of
this thesis cover different areas for the development of a new technique to realize autonomous

robotic in-space assembly for structures such as telescopes.

Firstly, the research focuses on a new design of bars to build more efficient truss assem-
bly. The joint nodes require techniques that involve the most advanced techniques in robotic
and usually require two robotic arms. The concept exposed here uses magnets for the node
connection which considerably reduces the difficulty of the assembly for the robot. Then two
techniques are presented in the example of telescope assembly, one with grooved bars on which
the mirrors are slide and a second one which incorporates magnets to the bars and the back of
the mirror to fix it to the structures. The second technique with the bars in a form of ”+” has

been more conclusive because easier to assemble and lighter.

Secondly, autonomous path planning is studied. First of all the kinematic of the UR10 is
presented which is the robot manipulator used during the research. This part is necessary to
understand how the robot manipulator works. The forward and inverse kinematic are studied.
Then tools to understand RL are exposed such as Markov Decision Process and the Bellman
equation which is used to update the states during the learning process. Also, Q-Learning and
Deep-Q-Learning (DQL) are explained in this part. Neural Networks are detailed for a better
understanding of DQL.

Finally, the simulation and the experiments are detailed. In this chapter, the evolution of
the experiments is shown. Pybullet is the final software that was chosen to conduct the ex-

periments. The Reach environment is compared for Q-Learning and DQL. This environment

II
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consists of reaching a target point within the minimum steps. The most efficient technique is
DQL, it is the more suitable policy for continuous tasks such as robotic. The last section is about
the Pick and Place environment. It is picking a magnetized ball at one position and placing it
in another location on the table. This last task is very close to an assembly and gave promising
results. Overfitting hasn’t occurred during the training thanks to the use of experience replay

and target network.

Key words : Motion Planning, Neural Network, Orbital Assembly, Robotic arm, Rein-

forcement Learning, Truss.

III



i Y e 2 1 e S DA 'S

Table of Contents

ADSITACT ittt sttt ettt et e b e et bae et e e naeeea I
Table OF CONTENLS  ...eoiiiiieiiieciie ettt e e e e e e et e e e e e e ssbaeeesbaeessseeessseeesnsesensseens 1A%
ALCTOMIYIIIS  ..tieuiiieeuiieeeiteeeitte et te et testtee sttt e satteesaaeeeenbaeesaseeennteeensseeensseeansaeennseeennseeennseesnnseens VII
LISt OF TADIES ...ttt sttt et e Vil
LISt Of FIGUIES ..ttt ettt ettt et st sae e e b e e ssaesnbeesaeaeas IX
I INEEOAUCIION ..ttt et ettt et e s e e e e 1
| B B 3 Ted ¢4 (0 ' Lo APPSR 1
1.2 Relative WOTKS ..ottt e e 6
1.2.1 Orbital assembLy PrOJECtS .....cceieviiiieeiieeiiie ettt ee e e seree e 6

1.2.2 Truss ASSEMDBLY ..oooiiiiiiiiiiieee et 8

1.2.3  Motion PIANNING ....ccviiiiiiriiieiieiie ettt ettt e et saeereesaeeesbeessaeebeesanaans 10

1.2.4 Reinforcement LEArNiNg .........ccccccveeeciieeiiiieeiiieeciee et et e eieeesveeesveeesevee e 13

1.3 Objective Of the STUAY ..ecueeeiieiieiiieie ettt et 16
1.4 Main Work and OrganiSation ...........ccccceeeeeuieeriiieeniieeesieeeiieeesireeesnreessneeesneeesseeenns 16

2 Truss ASSEIMDLY ...ooiiiiiiiiiieiii et ettt ettt naeeeas 18
2.1 ASSEMDLY IEMENLS ..cuvieiiiiiieiiecie ettt ens 18
2.2 Magnetic aSSEMDIY ......ccciiiiiiieiie e s 20
2.2.1  Neodymium MAZNELS .....cccueerieriieriieeiieriiesteenteesteesseesseeeseessreeseessnesnseeseeens 20

2.2.2 Presentation of the grooved bars ...........ccccceeeiiiiiiieeniie e 21

2.2.3 Presentation of the flat bars .........ccccoocviiiiiiiciiicceeee e 22

2.2.4  Final @SSEMDLY ..ocuoiiiiiiiieiieiie ettt e e ens 24

2.2.5 Comparisons of the deSIZNS ......ccccceeeviiiriiieiiie et svee e 26

2.3 Large structure assemDbLY .......ccceeeciieiiiiiiieiie ettt e ees 26

B SN V11 01 F: 1 AR 27

3 Autonomous path Planning ..........ccccceeriiiiiiiiieiieie e 28
3.1 RODOtIC KINEMALIC ....eiiiiiiiiiiieiiieieeiese ettt sttt 28
3.1.1  Forward KinematiC .........ccooiiiiiiiiiiiiiiii et 29

3.1.2  Inverse KiNemMAtiC .......cccoovieriiriiiriiiiiiienieeientesie ettt 29

3.2 Reinforcement Learning ThEOTy ........ccccoeviiiiiiiiieiiieeiiieeieeceeeeiee e 31
3.2.1  OVerall PIINCIPIE ..ooooieiiieiieeee ettt e e e e are e 31

3.2.2  Markov decision Process (MDP) ......cccccciiriiiiiieniieieieeeeeee e 32

3.2.3  Bellman @qUation ........c.cccciieiiiieeniieeiieeerteeereeeeieeesiee e teeesaeeesaeeesareeenaaee e 33

3.3 Q-LEANING .eeieiiieiiieiie ettt ettt ettt ettt ettt et e b nes 37
3.4 Deep Q IEAIMNING .ooocviieeiiieiiieeeiie ettt ee et e et e et e e e tteesaeeesbeeessbeeennseeennseeenns 37
3.4.1 Feedforward neural NEtWOTKS ........ccccuiiiiiieiiiieeieeeee e 37



TABLE OF CONTENTS

3.4.2  Error Backpropagation ..........cccceccieeriieeiiieeiieeeiieeeteeeieeeseeeesaee e 39
3.4.3 Weights and Bias ......ccccoeociieiiiiiiiiieeciee et 39
3.4.4 Deep Q NEtWOTK ..voieoiiiiiiieeee ettt eeaaee e 40
3.4.5  Target NetWOTK ....ooiiiiiiiiieee e 41
3.5 HyPErparameters .........ccccoooieomiiiiiiiiiieniieeiieeesteeeitee et eeite e et e e st e et e e sabeesnabee e 42
3.5.1 Alpha —deterministic versus stochastic environments ...............ccceeeveeeveerunnnne 42
3.5.2 Gamma —current versus future rewards .........ccoccocveeveeneeienieneeeeeeee s 43
3.5.3 Epsilon —exploration versus eXploitation ...........c.cccccceeviereiieriieeiiienieeiieennenns 43
3.6 Reinforcement Learning ProCeSS ........cccooviieiiiiiiiiieeiiiecieeeie e 44
3.6.1  REWATAS ..ot st 44
3.60.2  StAe SPACE .eooueiiiiiiiieiiie ettt ettt ettt e et e e 44
3.6.3  ACHION SPACE  .veeiuiieiieeiieeiieeiieeite et et e et e e e st e esttesnaeeseesabeesatesnbeessaesnseenneaens 44
3.7 Integration of RL for path planning ...........cccccecveriiiiiiiiiiiiieeeee e 45
3.7.1 RL-related algorithms .........cccoooiiiiiiiiiiiiieieeie e 45
3.7.2 RL applied to the StUAY ...ccccocvieiiiiiieiiecieeeeieee e 46
3.8 SUIMMATY cooeviieiiiieeiiee ettt e etee et e et e e et e e e taeeeeaeeessaeessssaeessaeessseeensseeensseennns 47
Simulation and EXPEITMENT ........cccvieeiiiieiiiieerieeerieeereeeerreeereeeeaeeeereeesreeesaseeessseeesaseens 48
4.1 Choosing the eNVITONMENT .......c.ccciiiiiiiieiiieiieete ettt e 48
4.1.1 ROS and SmartGrasping SandboX ...........ccccceerieriiieiieniiieiiere e 48
4.1.2 RODO-ZYIM oottt ettt ettt et e e esaaeenbeesnne e 49
413 PYDUILEE oottt et et ens 49
4.1.4 Comparison of the simulation envViroNmMeNt .............ccceeeeeevreerieerreenveesieennenns 50
4.2 SIMUIATION  ..eiiiiiiiiiie ettt ettt st ettt e b st e e naeeens 51
4.2.1 State and ACLION SPACE ...ceeeeruvieeiieeeiiieeeitieeeieeesteeesteeeseeeesaeeessneesseeessseeenns 51
4.2.2  ENVIFONIMENT ....viiiiiiiiiiiieeiiieeeteeeieeeeieeeeteeesaeeesataesssseessseessseesssseessseeessseeanns 52
4.3 Q-LEAIMING ..eeutieiiieiieiie ettt ettt ettt et e st e et e st e e bt e s seeebeesaeeenseesnaesaseenaeaens 53
431 QtADIE eiiieiiieeiieeeee et et e e et e e e aae e raeenaraeeans 53
4.3.2  Training the aZENt ......ccceeciieiiieiieiieeieeee et et e ete et e eeeeeteeseaeereeseaeenbeesaneens 55
4.3.3 Evaluating the agent .........ccccceeiiiiiiieiieiecieeieece et 55
4.4 Deep Q LEAINING ..oocovieeiiieeiiie ettt site et e e steeesiaeeeeaeessaeessaeessseeessseeennsees 56
4.4.1 Define NetWork .....oocooiiiiiiii e e 56
4.42  Compile NEtWOTK .....cccviiiiiiiiiiiiciiie et e et re e e sevee e 58
443 FIENEIWOTK oottt ettt et te et siee e e 58
4.4.4 Evaluate NetWOTK .....cccooiiiiiiiiiiiieieneee e 59
445 OVEITITHNGZ .voievieiieiiieiie ettt ettt et et e et e e s ae e bt essaeebeesaseesseenssesnseessneans 60
4.4.6 Make PrediCtions .......ccocoveeiieeienieieeiesiceie ettt 60
4.477 EXperience RePlaAY .....ccccooviiiiiiiiiiiecie ettt 60
4.4.8 Training the a@ENT ......cccccciieiiiieeiiee et e e e e eee e eaeeesreeennaee e 61
4.4.9 Evaluating the agent .........ccccccciieiiiiiiiieeiie et 63



i Y e 2 1 e S DA 'S

4.5 Comparison of the POIICIES ......ccceeviiiiiiiiiiiiiieeciie ettt s 66
4.6 Pick and PLACE ......oooouiiiiiiieeiiecee et e en 66
4.6.1  ENVIFONMENT ....ooiiiiiiiiiieiiiieeiee et eiteeeiteeeteeesteeeseaeestaeessaeesssnesssseesssseesnns 66

4.6.2 Training the agent and Evaluating the Network ..........cccccoevviiiiiiiiniieeniennns 67

N 101401 1 0 USSR RURSRP 70

S CONCIUSION ittt ettt et e e et e e e tteeestaeeensaeeessaeeesseeensseeensseennns 71
5.1 ThESIS SUMMATY ..ccuvieiiiieiiieeciie ettt et e e e et eeare e e aaeessbeeessbeeensseeensseeenns 71
5.2 Discussion and Future Workss .........ccoociieiiiiiiiiieeeeeeee e 71

L33 10) U0 ea:10] 1| PSSP 72
F N 0] 157 116 USSP 79
A3 Bars Plan oo e nnaee s 79
ACKNOWIEAZMENT ...ooiiiiiiiiieie e et eetae e s e e e enbeeesnbeeennaee s 81

VI



ACRONYMS

Acronyms

DDPG - Deep Deterministic Policy Gradient ;
DNN - Deep Neural Network ;

DOF - Degree Of Freedom ;

DQL - Deep Q Learning ;

DRL - Deep Reinforcement Learning ;
GPU - Graphical Process Unit ;

GUI - Graphical Unit Interface ;

HST - Hubble Space Telescope ;

ISA - In Space Assembly ;

ISS - International Space Station ;

MDP - Markov Decision Process ;

NN - Neural Network ;

RL - Reinforcement Learning ;

RRT - Rapidly exploring Random Tree ;
URDF - Unified Robot Description File

VII



i Y e 2 1 e S DA 'S

2-1
2-2

3-1

4-1
4-2
4-3

4-5

List of Tables
Comparison of the assembly forms . . . . . . .. .. ... ... ... ... .. 19
Comparison of the Policies . . . . . . . ... ... ... ... ... ...... 26
Denavit-Hartenberg parameters forthe UR10 . . . . . .. .. ... ... ... 29
Comparison of simulationstools . . . . . . ... ... ... .......... 50
Q table initialized with zeros . . . . . . . . .. .. .. ... .. 54
Qtable after training . . . . . . ... ... 54
Exploitation of the Qtable . . . . ... ... ... ... ... ... ...... 54
Comparison of the Policies . . . . . . . ... ... ... ... ... ...... 66

VIII



LIST OF FIGURES

1-1
1-2
1-3
1-4
1-5

1-7

1-8

1-9

1-10
1-11
1-12
1-13
1-14
1-15
1-16
1-17
1-18
1-19
1-20
1-21

1-22
1-23

2-1

2-3

2-4

2-5
2-6

2-8

List of Figures

Evolution of the size of the telescope from [8] . . . . . .. .. ... ... ...
Relationship between performance and antenna size from Satmarin (2017) . . .
International Space Station . . . . . . ... ... ... ... ...
Hubble telescope . . . . . . . . . . .
Large space structures. (Top) Aerobrake, (Bottom) Precision segmented reflec-

tor from [18] . . . . . . . L
James Webb telescope unfolding inspace . . . . . ... ... ... ......
Unfolding structures from [27] . . . . . . . . . ... ... ... ... .....
On-Orbit servicing, manufacturing, and assembly by Made in Space Inc . . . .
Project PULSAR underwater testing . . . . . . . ... ... ..........
JAXA SSPSproject . . . . . . . . . . e
SpiderFab bot building support structure . . . . . . .. ...
Trusselator building triangular truss in continue . . . . . . . ... ... ....
Nodes developed by NASA for trussassembly . . . . . ... ... .......
Space cell robot assembling truss in orbit from [46] . . . . . . . ... ... ..
Classification of planning algorithms . . . . . . . . ... ... ... ... ...
Rapidly exploring random tree from [50] . . . . .. ... ... ... .. ...
Attractive and repulsive force field from [54] . . . . . . ... ... ... ...
Reinforcement Learning scenario . . . . . . . . . . . ... .. ...
URS reach task MuJoCo environment from [65] . . . . . .. .. ... ... ..
The Four Fetch environments . . . . . . ... ... ... ... .........
Industrial robot use case scenarios (left: real environment, right simulation en-

vironment). Mobile navigation with obstacle avoidance of MiR100 on the top

and end effector positioning of UR10 on the bottom. . . . . .. .. ... ...
Smart grasping sandbox in the simulator Gazebo . . . . . . .. ... ... ..

Graphical summary of thethesis . . . . . .. ... ... ... .........

Squares . . . .. L e e
Triangles . . . . . . . .
Hexagons . . . . . . . . . e
Comparison of the forms . . . . . . ... ... ... ... ... ........
Magnets used for theassembly . . . . . .. ... ... oL
3D models of the grooved bars . . . . . ... ... ... ... ... ... ...
3D printing of the bars withresin . . . . . . ... ... ... ... L.

Different views of the grooved bars . . . . . .. ... ... ... ... ..



i Y e 2 1 e S DA 'S

2-9 Model of the grooved barsassembly . . . . ... ... ... ... ....... 22
2-11 Different views of the flatbars . . . . . . . .. ... ... ... 23
2-10 3D model of the Flatbars . . . . . . . .. ... ... ... ... ... ... 23
2-12 Model of the flatbarsassembly . . . . . . . ... .. ... ... ........ 24
2-13 Sequence of assembly for the groovedbars . . . . ... ... ... ...... 24
2-14 Sequence of assembly for the flatbars . . . . . .. ... ... ... ...... 25
2-15 Final assembly of 7 mirrors with the second design . . . . .. ... ... ... 25

3-1 Coordinate frames for UR arm. Joints rotate around the z-axes and are pictured

at ;=0 for 1<i<6 . . . . . . .. 28
3-2 Inverse kinematictable . . . . . . ... ... L oL 30
3-3 Inverse Kinematic solver on Matlab . . . . . . ... ... ... ... .... 30
3-4 Graphical state value function . . . . .. ... ... ... ... ..., 34
3-5 Graphical action value function . . . . . . ... ... ... ..., 35
3-6 Graphical Bellman state value equation . . . . ... ... ... ........ 35
3-7 Graphical Bellman action value equation . . . . . . . ... ... ... ..... 36
3-8 Neural Network . . . . . . . . ... . 38
3-9 [Illustration of backpropagation . . . . . . . .. . ... ... ... ... ..., 39
3-10 Weightsand Biases . . . . . . . . . . . . . ... ... 40
3-11 Comparison between Q-learning and deep Q-learning . . . . . . . .. ... .. 41
3-12 Targetnetwork . . . . . . . . ... 42
4-1 Shadow hand with ROS+ Gazebo . . . . .. ... .. ... ... ... .... 48
4-2 ”EndEffectorPositioningUR10Sim-v0” in Reality and in Gazebo . . . . . . . . 49
4-3 Pybullet GUL . . . ... .. e 50
4-4 Three different parts of the simulation . . . . ... ... ... ......... 51
4-5 Presentation of the simulated UR . . . . . . .. ... ... ... ........ 51
4-6 Workspace mapofthe UR . . . ... ... ... .. .. .. .. .. ...... 52
4-7 Training after 1000 Episodes . . . . . . . . . . . . ... ... ... ...... 55
4-8 Comparison aftertraining . . . . . . . . . . . .. ... 56
4-9 Three different activation functions . . . . . . . .. .. ... ... ... .. .. 57
4-10 Overfitting . . . . . . . . . . e e e e e 60
4-11 Evaluation of the agent for reach . . . . . . . . . . ... ... ... ...... 63
4-12 TIPPOSE . . o v o o e e e e e e e e e e e 64
4-13 Comparison after training . . . . . . . . . . . . . . ..o e e . 64
4-14 Stepstoreachthetarget. . . . . . . . . . . . . ... ... .. ... ... 65
4-15 Stepstopickandplace . . .. ... ... ... ... ... ... 67
4-16 Evaluation of the agent for pick and place . . . . . . . .. .. ... ... ... 68
4-17 Assembly of hexagons with the magneticballs. . . . . ... ... ... .... 69



1 INTRODUCTION

1 Introduction

1.1 Background

The assembly of spacecraft on the ground and their integration into a launch vehicle places
many constraints (mass, volume, and load) on the capabilities that can be deployed in space [1],
including adding to the cost of launch. The sizes of the systems such as telescope are limited by
the launch vehicle capabilities [2, 3]. Another issue related to this approach is the technology
obsolescence due to the long-term ground construction and verification process [4]. In contrast,

on-orbit assembly offers a pathway to address such limitations in a variety of ways [5-7].

As the following figures highlight Figure 1-1 and Figure 1-2, over time the size of the

structures in space are increasing to gain in performance.

&
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Fig. 1-1 Evolution of the size of the telescope from [8]
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Antenna Size & Performance Comparison

Gain Diameter (r x 2) Surface (w xr?) Increase
48.0 dBi 240 cm 45239 cm? +156%

43.9 dBi 150 cm 17671 cm? +56%
42.3 dBi ' 120 cm 11310 cm? +44%
40.0 dBi = 100 cm 7854 cm?  +178%
35.7 dBi . 60 cm 2827 cm®  +300%

30.3 dBi

calculated at 12.5GHz, 70% efficiency

Fig. 1-2 Relationship between performance and antenna size from Satmarin (2017)

Different techniques already exist for large structure assembly. The main examples of In
Space Assembly are the Hubble Space Telescope (HST) [9] and the International Space Station
(ISS) [10].

\
e AR RN AR AR AR AR RRRRRRA NN \\\\\\

Fig. 1-3 International Space Station
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Fig. 1-4 Hubble telescope

Hubble was launched in 1990 and built with on-orbit servicing in mind. Astronauts were
trained in the intricacies of the systems and the modularity of the parts. After launch, a servicing
mission ensued to repair the mirror and blurry optics. Five servicing missions over the next 12
years followed, lengthening the lifespan of the telescope and improving its capabilities [11].

HST still produces valuable science today.

The assembly of the ISS involved over 160 spacewalks spanning 1,061 hours. With as-
sembly now complete, the station is the size of a football field as illustrated in Figure 1-3. The
ISS encompasses over 900 cubic meters of pressurized volume and has been home to over 200

people representing 15 countries.

The frequent servicing missions for the HST and the ISS and the Columbia accident moti-
vated Northrop Grumman to designed a Hubble Robotic Servicing Vehicle (Lillie 2006), com-
plete with two robotic arms having seven degrees of freedom and a 23-foot total arm span called
Dextre [12] developed by Macdonald, Dettweiler, and Associates (MDA) of Canada. MDA has
extensive experience in robotic, human-in-the-loop servicing, having developed Canadarm [13]

for the Space Shuttle and Canadarm?2 and Dextre for the International Space Station.

Since the 1970s, many international scientific research institutions have begun to study
techniques for constructing large structures in space [14-16]. Studies revealed that trusses are
relative structural simplicity with high packaging efficiency [17] they can be assembled piece-

by-piece on-orbit. They form the primary support structure in many missions including aero-

3
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brakes [18], telescopes [19], and solar array fields [20]. The elements are designed to be inserted
and removed singly in “random access” , thus eliminating some assembly order constraints

and enabling a physical realization of the construction process.

Fig. 1-5 Large space structures. (Top) Aerobrake, (Bottom) Precision segmented reflector from [18]

With the development of In Space Assembly (ISA), in addition to space, remote control
robots [21] researchers began to work on fully autonomous space robot systems for autonomous
assembly [22]. Autonomous assembly of large structures in space is a key challenge to imple-
ment future missions that will necessitate structures to be self-deployed as a single piece [15].
In the case of the James Webb telescope [23], the assembly is simply done by unfolding the mir-
rors once in space as shown in Figure 1-6. This technique limits the size of the telescope and
increases the payload required. It is not the best way to proceeds to embark such large systems.
Only substructures should be sent to space and then assembly [16]. The substructures already
designed are not very adaptable, it is still composed of modular systems [24-26] or unfolding
structures as on Figure 1-7 [27, 28]. The joints are rather not convenient for robotic assembly
it usually requires the robot to make complex sequencing [29, 30].
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4:03:36:03

DAY HOUR MiN BEC

Fig. 1-6  James Webb telescope unfolding in space

Side View
Packaged Deployed

Fig. 1-7 Unfolding structures from [27]

A robot that could be highly adaptable could be used for many different assemblies and
would be sent only once with no need to take it back to earth for reprogramming. A 6-DOF
arm combined with a truss assembly also adaptable to different kind of structures (antenna,
telescopes...) could completely change the space assembly and have benefits in many different
fields;

* In astronomy, these assemblies could enable the construction of telescopes too large to be
fully built on Earth and launched into orbit.

* In Earth science, on-orbit truss assembly could reduce the number of satellite launches for
weather and climate observations through the creation of a persistent platform assembled

in space.
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* The payoft is not limited to science and exploration alone. On-orbit manufacturing and
assembly could also provide a payoft for commercial missions, especially communication

satellites in geosynchronous Earth orbit (GEO).

* On-orbit assembly has the potential to provide unique returns for the national security
community. For reconnaissance missions, for example, the orbital assembly could pro-
vide the ability to assemble larger apertures than feasible on fully assembled satellites to

achieve greater spatial resolution.

To apply robots in space for construction missions, lots of key robotic technologies are re-
quired. Robot-based assembly in the absence of gravity addresses fundamental technical ques-
tions that do not exist for terrestrial applications. While teleoperated or partially assisted assem-
bly operations are possible on the ground, in space constructions require autonomous assembly
[31]. The robotic assembly process is made through the combination of adaptable perception,
integrated assembly and grasp planning, and compliant control of the manipulators [32]. The
robot has to be able to reach the elements of assembly with precision then grasp them and finally

place them with the right orientation to the desired position for an assembly.

In these challenging techniques, one of the most important technology is motion planning.
The trajectories or steps for an assembly that may be obvious for a human have to be carefully
studied and programmed for a robot. Motion planning, also path planning is a computational
problem to find a sequence of valid configurations that moves the object from the source to des-
tination. Robotic motion planning is a well-studied field at the intersection of optimal control,

artificial intelligence, and applied mechanics [33].

1.2 Relative Works

Orbital assembly is knowing a new age with the use of robots since the late 1990s [13, 21,
34]. Human-assisted assembly will continue to play a role but it’s reaching its limits [35]. A
Spectrum of robotic techniques could be used to supplement human assembly and services such
as the new robot developed by NASA called "Robonaut” [36, 37] which is costly and pose a risk
to human life. On another hand Reinforcement Learning applied to a robot, the manipulator has
recently gained the attention of industrial and research teams around the world. In this section,

the work related to this study will be presented for a better understanding of nowadays evolution.

1.2.1 Orbital assembly projects

On-Orbit Manufacturing and Assembly is just arising, in their work [8] explores the ben-
efits of it. Made In Space launched a 3D printer to the ISS in partnership with NASA as a

6
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technology demonstration project. Their work is now going further, they intend to deploy satel-
lites that 3D prints itself and built its own solar array. Made in Space is working with NASA
on the program OSAM-2 (On-Orbit Servicing, Manufacturing and Assembly) [38] for the next
generation of orbit assembly previously called Archinaut One [39]. 3D printing is a big part of
the project but there also the robotic part. A Universal Robot (UR) is used for the assembly of
the printed truss.

Fig. 1-8 On-Orbit servicing, manufacturing, and assembly by Made in Space Inc

PULSAR which stands for Prototype for an Ultra Large Structure Assembly Robot [40] is a
European Project that aims to develop and demonstrate key technologies for in-space assembly
of the primary mirror of a 12m diameter telescope. It’s the autonomous assembly by a robot of
previously developed building blocks. The project focuses on the assembly of a mirror but the

developed technology will apply to other large structures.

Fig. 1-9 Project PULSAR underwater testing



[T [ Y e 2 R e S VA '

The Japanese Aerospace Exploration Agency (JAXA) is leading research on large-scale
Structure assembly technology [41]. The Space Solar Power System (SSPS) requires robotic
assembly technology that will be critical for the safe and affordable construction of kilometer-
scale structures in orbit. As a first step, they have been researching a robotic assembly technol-

ogy capable of assembling a 100-meter-scale space structure in orbit.

Fig. 1-10 JAXA SSPS project

1.2.2  Truss Assembly

In the early 1990s, researchers at NASA Langley Research Center realized the potential
for automated assembly of space structures and began the development of a robotic system to
assemble truss structures with equal length members [42]. Truss assembly plays an important
role when one needs to build strong and light structures according to [43]. Truss allows con-
structing complex structures from a simple one. It considerably reduces the amount of space

and weight in the launch vehicle. All the projects cited in the previous section use trusses.

A famous project using truss assembly is SpiderFab [44]. The vision of SpiderFab is to
create a "Satellite Chrysalis”, consisting of raw material in a compact and durable state. It is
producing “’software DNA” assembly instructions that look like the web of a spider built with
trusses to get an operational space system like a solar array for satellites, large antennas, or

telescopes.
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Fig. 1-11  SpiderFab bot building support structure

One very interesting technology for truss constructions is the ”Trusselator” developed by
NASA for the project. The second generation can build up 50m of 50mm triangular cross-
section trusses. With the ESPA payload (320kg) which is an adapter for launching secondary

payloads on orbital launch vehicles, SpiderFab can build up to 7,000m first order Truss of
100mm thickness.

Fig. 1-12  Trusselator building triangular truss in continue

Once the robot has created a structural element and positioned it properly on the spacecraft
structure, it will require means to bond the element to the structure. This bonding could be

accomplished using welding, mechanical fasteners, adhesives, and other methods.
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Another method is to have a connector such as the one developed by NASA [29]. The

system is shown in Figure 1-13.

Machine vision target Receptacle

Alignment

groove Connector

plunger

— Locking
nut

Alignment and grasp adapter — Connector face %
Locked Joint Unlocked Joint

Fig. 1-13 Nodes developed by NASA for truss assembly

Other techniques involving 2 or more robotic arms are used for truss assembly [45], such
as the one on Figure 1-14 it can make the robot have different degrees of freedom of operation
and satisfy the operation function of the robot to the greatest extent by cooperating with three
kinds of combined robots, namely, the handling robot, the transfer robot and the assembly robot,
and fully considering the operation characteristics and requirements of the three kinds of robots
[46].

v y M8/

. g\

S LR S
W o ALY

Fig. 1-14 Space cell robot assembling truss in orbit from [46]

1.2.3  Motion planning

Motion planning, also path planning is a computational problem to find a sequence of valid
configurations that moves the object from the source to destination. Robotic motion planning
is a well-studied field at the intersection of optimal control, artificial intelligence, and applied

mechanics. In their work [47] and [48] listed the current techniques for motion planning.

10
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According to [48] motion planning can be divided into two categories, traditional algo-
rithms, and Machine Learning (ML) algorithms. The different techniques are presented in Fig-
ure 1-15.

Planning Algorithms

Traditional algorithms Machine Learning based algorithms
Graph search Sampling based Artificial Potential Supervised Reinforcement Policy Gradient
based algorithms algorithms Field (APF) Learning Learning

Fig. 1-15 Classification of planning algorithms

Traditional algorithms

Graph-search-based algorithms can be divided into the depth-first search, breadth-first
search firstly introduced by Dijkstra’ s algorithm [49], and best-first search. The depth-first
search algorithm builds a search tree as deep and fast as possible from origin to destination until
a proper path is found. The breadth-first search algorithm shares similarities with the depth-first
search algorithm by building a search tree. The search tree in the breadth-first search algorithm,
however, 1s accomplished by extending the tree as broad and quick as possible until a proper

path is found.

Sampling-based algorithms randomly sample a fixed workspace to generate sub-optimal
paths. The rapidly-exploring random tree (RRT) and the probabilistic roadmap method (PRM)
are two algorithms that are commonly utilized in motion planning. RRT is an algorithm de-
signed to efficiently search nonconvex, high-dimensional spaces by randomly building a space-
filling tree. The tree is constructed incrementally from samples drawn randomly from the search

space and is inherently biased to grow towards large unsearched areas of the problem [50], [51].

11
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45 jterations 390 iterations

Fig. 1-16 Rapidly exploring random tree from [50]

The artificial potential field (APF) is based on the uptake of the robot to a particle, con-
strained to move in an APF [52]. The method is inspired by the electrical charges’ concept
introduced by Khatib in [53], whereby the objects in the configuration space, where the vehicle
is traveling, are presumed to emit potential charges. The goal or target position is assumed to
generate an attractive force that pulls the robot towards it. On the other hand, the obstacle cre-

ates a repulsive force the pushes the robot away as presented in Figure 1-17 [54].
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Fig. 1-17 Attractive and repulsive force field from [54]
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Machine Learning algorithms

Supervised Learning is the machine learning task of learning a function that maps an in-
put to an output based on example input-output pairs. It infers a function from labeled training
data consisting of a set of training examples. One technique well-known is the support vector
machine (SVM) [55] for classification. The basic principle of SVM is about drawing an optimal
separating hyperplane between inputted data by training a maximum margin classifier. Other
well-used techniques are Long-short term memory LSTM [56] which is a variant of a recur-
rent neural network, Monte Carlo tree search (MCTS) which is the combination of Monte-carlo
method [57] and search tree [58].

Reinforcement Learning (RL) is a technique where the agent is learning from its experi-
ments. The main policies in RL are Q-Learning where the agent updates a Q-Table through the
Bellman equation at each step, and the second one is the Deep-Q-Learning, instead of a Q-Table
a Neural Network is used at each episode, to that technique Experience Replay is usually used.

These policies will be described in detail in the next section and Chapter 3.

Policy Gradient is a probability distribution P{a|s, 0} = my(a|s) = m(als, f) that is used
to select action a in state s, where weight € is a parameter matrix that is used as an approximation
of policy m(al|s). Policy gradient method [59] seeks an optimal policy and uses it to find optimal
actions [60, 61].

1.2.4 Reinforcement Learning

To solve the motion planning issues RL will be used. Rather than programming in RL, the
agent is learning from its experiments. The typical framing scenario is: an agent takes actions
in an environment, which is interpreted into a reward and a representation of the state, which

are fed back into the agent.

ﬂ vironment
‘{/.

\\, Rewar
Interpreter

% -

Action

Agent

Fig. 1-18 Reinforcement Learning scenario
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It has been growing rapidly, providing a wide variety of learning algorithms like Deep Q
Learning, rather than using value iterations as in the Markov Decision Process (MDP) to deter-
mine the Q-values and find optimal Q-function, we alternatively use a function approximation
to estimate optimal Q-function i.e. using Deep Neural Networks (DNN) [62-64]. On the fol-
lowing figure from [65], a URS is reaching a target in Mujoco using RL.

Fig. 1-19 URS reach task MuJoCo environment from [65]

More and more projects are starting to use Reinforcement Learning to program 6 Degree
of Freedom (DOF) Robotic arms using deep learning [66-68], and Q-Learning [69, 70]. The
tossing bot learns to pick objects in a box and throw them in another [71] with reinforcement
learning. An interesting project is Fetch. Four different tasks are already proposed, FetchReach,
FetchPush, FetchSlide, and FetchPickAndPlace. In all Fetch tasks, the goal is 3-dimensional
and describes the desired position of the object (or the end-effector for reaching). Rewards are
sparse and binary: The agent obtains a reward of 0 if the object is at the target location (within

a tolerance of 5 cm) and —1 otherwise [72].

1

e

(a) FetchReach (b) FetchPush (c) FetchSlide (d) FetchPickPlace

Fig. 1-20 The Four Fetch environments
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Great work has also been done by [73] in order to increase the use of Deep Reinforcement
Learning (DRL) with real robots and reduce the gap between simulation and real-world robotics,
they proposed an open-source toolkit: robo-gym. It’s an environment of Openai Gym which is
a tool for machine learning in robotics. The environments are created for two robots the UR10
and MiR100.

Fig. 1-21 Industrial robot use case scenarios (left: real environment, right simulation environment). Mobile
navigation with obstacle avoidance of MiR100 on the top and end effector positioning of UR10 on the bottom.

The Shadow Robot Company developed an environment called ”Smart Grasping Sandbox”
with all usuals to get started with their gripper and the UR10. They used Machine learning to
improve the grip and the accuracy of it. In the simulation, the robot grasps a ball, lifts it, and
then shakes the hand to check if the ball has correctly been grasped then a reward is given and
another experiment is started. The program is very convenient and rather easy to use and modify.
It provides a variety of tools and libraries to get started quickly with playing with the robot: the

robotic framework (ROS), the simulator (Gazebo), or also the planning libraries (Movelt!).

Fig. 1-22  Smart grasping sandbox in the simulator Gazebo
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1.3 Objective of the study

The idea of this study is to use Reinforcement Learning for path planning and so improve
the in-space assembly through this technique. Machine Learning has gained attention recently
to control robot manipulators and a lot of work has been done to adapt it to the different fields
of study such as Orbital Assembly. The complexity of this technique is compensated by the

accuracy and autonomy it can produce. The main objectives here are:

* to provide a new design of bars to ease and gain in performance for future assembly of

truss structures,
* to generate a program from scratch that enables to use UR10 with RL,

* to test the efficiency of the RL on a task similar to an assembly task which is picked and

place.

The engineering problem has two concerns, first the algorithm for motion planning has
to be resilient. It aims to be autonomous, robust to perturbations, and using few computing
power. Then the truss elements have to be simplified for the robotic assembly, especially at the
joint nodes and be fully adaptable to different kind of structures (telescopes, aerobrakes, solar

array...).

1.4 Main Work and Organisation

The second Chapter is dealing with a new design of bars for truss structures to ease the
assembly of the robot. The main idea is to think of a more efficient way to assemble mirrors for
telescopes. Different forms of assembly (Triangles, Squares, Hexagons) are firstly compared
to get the minimum number of bars and so lighten the structure. Then two types of bars are
presented, one with the groove in which the mirrors are slide and the second one in form of
a ”+” from the side. For this second design, magnets are used for the assembly of the mirror
which also facilitates the assembly for the robot. The bars are bind together with magnetic balls

instead of rather complex joint nodes.

In Chapter 3 the Kinematic of the URI10 is described. Then it deals with path planning
which is made using Reinforcement Learning. Tools to understand machine learning are de-
tailed. The Markov Decision Process (MDP) and the Bellman equation for updating the Q
values are the two main techniques used in the reinforcement. First, the Q Learning Policy is

explained and then the Deep Q Learning as well as Neural Networks.

Then in Chapter 4, the simulation is detailed. The choice of the software for the study is

explained. During the first steps of the study different environments of work were tested before
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to find the optimal one for the task. The program is made from scratch and the different part of
a RL program is explained in this chapter. The main objectives in the experiments are, first to

reach a target and compare the efficiency of the Policies for this task and then to pick and place
an object.

Finally, a conclusion is made and a discussion is made about the study and the future works.
The figure below is a summary of the thesis work.

- Dynamic and Kinematic of the UR10

- Presentation of Reinforcement Learning for
autonomous path planning

Design of bar for the truss assembly

[ e

7 % & [ Q Learning

Deep Q Learning

- Finding the optimal path to
reach a target

- Picking and Placing an object

Fig. 1-23  Graphical summary of the thesis
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2 Truss Assembly

The joint at the assembly nodes is a crucial part. For a robotic assembly, it is the part that
requires the most advanced techniques but it could be facilitated with a well-engineered process.
In this Chapter, different forms will be discussed for the assembly of mirrors and then magnetic
joints will be presented.

2.1 Assembly elements

Telescopes are the most common large structures that require on-orbit assembly. The ac-
curacy of a telescope depends in part on the size of the mirrors. For on-orbit assembly, the main
constraint is the payload that the rocket can send into space. In this section, different forms
will be compared for the assembly of mirrors for telescopes. A surface of 25m? is taken as a
reference and size of 1.48m for the bars.

1) Squares

For a total surface of 26.2 m? of mirrors, the assembly with squares requires 32 bars of
1.48m.

Fig. 2-1 Squares

2) Triangles

For a total surface of 22.7 m? of mirrors, the assembly with triangles requires 42 bars of
1.48m.

AVAVA
AVAVAVA

Vo

Fig. 2-2 Triangles
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3) Hexagons

For a total surface of 35.8 m? of mirrors the assembly, squares require 72 bars of 0.74m
which is 36 bars of 1.48m.

Fig. 2-3 Hexagons

4) Comparison

The Hexagon is the form that allows the minimum of bars compare to the surface that it
could offer for the mirrors. On the Figure 2-4 the red circle represents a surface of 25m? So that
form will be chosen for the rest of the assembly.

O

Fig. 2-4 Comparison of the forms

Tab. 2-1 Comparison of the assembly forms

Number of bars (1.48m) Area of mirrors
Squares 32 26.2m?
Triangles 42 22.7m?
Hexagons 36 35.8m?
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2.2 Magnetic assembly

The assembly of truss structures is made with a rather complicated mechanism such as the
one presented by NASA in [29] in Figure 1-13. Some other techniques require two robotic arms
as in Figure 1-14 from [46]. The magnets used will be first presented then the concept of a new
design for truss assembly bars. The plans of the bars used in this section are detailed in the

appendix.

2.2.1 Neodymium magnets

Neodymium is a chemical element with the symbol Nd and atomic number 60. Neodymium
belongs to the lanthanide series and is a rare-carth element. To make the neodymium mag-
nets it is alloyed with iron, which is a ferromagnet. Neodymium magnets (actually an alloy,
Nd2Fe14B) are the strongest permanent magnets known. A neodymium magnet of a few grams

can lift a thousand times its weight.

Neodymium magnets have a very high coercive force, and there will be no demagnetization
and magnetic changes under the natural environment and general magnetic field conditions.
Assuming under an appropriate environment, even after a long period of use, the magnetic
performance of the magnet will not be greatly reduced. Therefore, in practical applications, we
often ignore the influence of time on the magnetic performance of neodymium magnets. The

pictures below are presented the magnets used for the assembly.

y

C /
~ ‘ — 1.5mm Q

= i oo
i) 5mm

Fig. 2-5 Magnets used for the assembly

Usually, the magnets are named with a letter (N, M, H, SH, UH our EH) and a number (40,
42, 45...). The letter gives information about the maximum temperature of use. The number
corresponds to the maximum rate of energy. In our case, we choose a magnet which is N52 so
the maximum temperature of use is 80° and the energy of magnetization is the maximum we

could find. The magnet can load 0.2 kg which is more than enough for the size of the bars.
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2.2.2 Presentation of the grooved bars

The bars are 3D printed with a groove for the assembly of the mirror. Neodymium cubes

are inserted in the center of the bars to enable connection with the other bars through a magnetic
ball.

(b) Joint nodes
(a) Model view of the grooved bar

Fig. 2-6 3D models of the grooved bars

The following figure presents the bars during the printing. A 3D printer using resin has
been used. A first model was made using polylactic acid (PLA) but the final result was not
enough accurate for the assembly. In this method, the pieces are printed in a resin bath by

solidifying the resin layer by layer with a UV lamp. This technique allows more continuous
elements.

Fig. 2-7 3D printing of the bars with resin
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In the following figures, the different views of the bars are presented.

(b) Top view of the

(a) Side view of the grooved bar
grooved bar

(c) Assembly of two bars

Fig. 2-8 Different views of the grooved bars

The 3D model of the expected final assembly with the hexagonal mirrors is presented in

the following figures.

(a) One mirror l()b) Mirrors assembly of the grooved
ars

Fig. 2-9 Model of the grooved bars assembly

2.2.3 Presentation of the flat bars

This second design of the bars for the truss is in a form of a ”+”. This form uses less resin

than the grooved bars. A magnet is placed in the middle of the flat bar. The magnet is a small
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(b) Top view of the flat bar

(a) Side view of the flat bar
(c) Assembly of two bars

Fig. 2-11 Different views of the flat bars

cylinder with a diameter of 3mm and a high of 1.5mm. The bars are 2mm thick so the magnet

easily fits in it. The same magnet is glued on the back of the 6 sides of the mirror.

Fig. 2-10 3D model of the Flat bars

The advantage of this form is that it’s symmetric so there is no need for the robot to take
care of the orientation for the assembly. The assembly is simplified compared to the first design.
The elements are just fixed together with magnets and the mirror is simply posed on top of the

hexagon, no need to slide the mirror into the slit.

The different views of the bars are presented in Figure 2-11 and the model of the assembly

in Figure 2-12.
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(a) One mirror

(b) Assembly of the mirrors with flat bars

Fig. 2-12  Model of the flat bars assembly

2.2.4 Final assembly

For the grooved bars, at the beginning the robot assembles the four first bars, then the

mirror is slide on the grooves, and finally, the contour of the closed with the two last bars.

Fig. 2-13  Sequence of assembly for the grooved bars

The assembly of one mirror is 14.8cm in length, this measure is made from one side to the
opposite one. With these grooved bars, the thickness of the bars is to be taken into account for
the total assembly. For the 7 mirrors assembly, the size from bottom to top is 42.5cm length,
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compared to 40.9cm for the theoretical assembly on the software. It represents an error of 3.9%.

For a telescope, this design takes a part of the mirror’s reflection due to the grooves.

(a) Assembly of the 6 bars (c) Final assembly of one mirror

(b) Back view of a mirror with
the magnets

Fig. 2-14 Sequence of assembly for the flat bars

For the second design, the assembly is much faster, first the 6 bars and assemble and then
the mirror is fixed just by posing it. The magnets allow the mirror to get in the right position, it

plays the same role as the grooves.

Fig. 2-15 Final assembly of 7 mirrors with the second design

The average size measured of one mirror is 13.8cm and the total assembly 41.5¢m compare
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to 13.6cm and 40.2cm for the assembly on the software. The error is 3.2% for this assembly.

2.2.5 Comparisons of the designs

The second concept of bars is much more relevant than the first one. The flat bars are
lighter, weighing about 7g compared to 10g for the grooved bars. The total size of the assembly
is 42.5c¢m and 41.5¢m respectively for the grooved bars and the flat bars.

Another important point is that the flat bars take less space in the assembly between the
mirrors. It is 1cm smaller but the surface of the mirrors is greater, the total surface is exploited.
With the grooved bars, the surface lost is 69.3¢m?, due to the 0.3cm grooves, for a total surface
of mirrors of 1022cm?. It represents 14.7% of the total surface of mirrors. The grooved bars
are also more difficult to assemble with the mirrors for the robot because they have to be slide

on them.
The comparison of the designs is summarized in the following tabular.

Tab. 2-2  Comparison of the Policies

Grooved bars Flat bars
System to fix the mirror Slide in Grooves Magnets
Steps for assembly 3 2
Weight 10g g
Theoretical size 40.9cm 40.2cm
Assembly size 42.5¢c¢m 41.5e¢m
Assembly error 3.9% 3.2%
Lost surface 69.3cm? None

This technique using magnets ease the assembly. Compare to [29] where the nodes are
used to position the receptacles to form a specific structural geometry. The receptacles form
half of the joint and include an alignment groove that is grasped by the end-effector receptacle
fingers to fix the end-effector position during strut installation. The other half of the joint is
affixed to the strut and includes a locking nut that is rotated by a nut driver on the end-effector
as shown in Figure 1-13.

2.3 Large structure assembly

These designs of truss bars address a new pathway for large structure assembly. Instead
of unfolding telescopes such as the James Webb telescopes, this bars using magnets allows to

build directly the structure into space. The assembly of mirrors is made close to a telescope
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shape in order to prove the feasibility of this project for this type of large structures. Finally the
path planning is eased with a system using magnets. The grasping part can be removed from
the problems because the bars are directly grasped with a magnetized end effector. The same
remark can be applied to the joint nodes which made by magnets as well. Third point is the
orientation of the bars which is also facilitated the path planning, the manipulator doesn’t need

to take the orientation of the bars for the assembly.

2.4  Summary

The best design as it has been shown is the second one using flat bars and magnets for the
fixation of the mirror. This design ease the assembly for the robot. First, the grasping is made
using magnetization so no need for special grasping. There is no lost surface and the bars are
lighter which is a very important consideration for an on-orbit assembly where the payload is
very costly. Then because of the symmetry of the bars, the assembly needs to care only about
the orientation of the element on the z ax. Finally, this design can easily be printed in space

same as the “Trusselator” which considerably reduces the payload for big structures assembly.
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3 Autonomous path planning

As said before motion planning, also path planning is a computational problem to find
a sequence of valid configurations that moves the object from the source to destination. In
this Chapter, the kinematic of the Universal Robot (UR) is firstly presented. Then the path
planning is made using reinforcement learning which is a technique that perfectly fits robotic

when autonomy and adaptability are expected.

3.1 Robotic Kinematic

Robotic motion planning deals with robot kinematics in low dimensions, with constraints
such as collision avoidance and self-intersection. The kinematic state space is often referred
to as the configuration C-space, equal to the number of DoF. Robot kinematics governs how
linkages move, restricting the feasible configuration space due to collision and linkage geome-
try. In some cases, continuous planning for robot kinematics can be turned into decisions of a
discrete set of actions, resulting in discrete planning. The study of the Kinematic equation will

be conducted to have a description of the movement of the robotic arm.

Fig. 3-1 Coordinate frames for UR arm. Joints rotate around the z-axes and are pictured at §,=0 for 1<i<6
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3.1.1 Forward Kinematic

We start by the forward Kinematic that allows us to describe the position of the end effector

as a function of joint angles:

Bg(01,02,03,04,05,05) = B1(01)1B2(02)2B3(03)3B4(04)4B5(05)5Bs(0s)6 = (3-1)
-nl’ OI a’x px-
Ay Dy

0 0 0 1

(3-2)

where B,,(6,,),, describes the desired joint angles of the robot. The calculation is detailed

in [74], we finally obtain the Denavit-Hartenberg parameters:

Tab. 3-1 Denavit-Hartenberg parameters for the UR10

Kinematic 0 [rad] a[m] d[m] «a [rad] Dynamics Mass Center of Mass [m]
(kg]

Joint 1 0 0 0.1273 /2 Link 1 7.1 [0.021, 0.000, 0.027]
Joint 2 0 -0.612 0 0 Link 2 12.7 [0.38, 0.000, 0.158]
Joint 3 0 -0.5723 0 0 Link 3 4.27 [0.24, 0.000, 0.068]
Joint 4 0 0 0.1639 /2 Link 4 2 [0.000, 0.007, 0.018]
Joint 5 0 0 0.1157 - /2 Link 5 2 [0.000, 0.007, 0.018]
Joint 6 0 0 0.0922 0 Link 6 0.365 [0.000, 0.000, -0.026]

All results presented in the table are used to create the Unified Robot Description File
(URDF) later in this study for the experiments and simulations.
3.1.2 Inverse Kinematic

The analytic inverse kinematics problem is to find the set of joint configurations () = ¢;
where ¢; = (0}, ..., 05) € [0, 2n] that satisfies :

Ny Oy Gy Py

ng 0, Gy P

(3-4)
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Where (B¢) describes the desired position and orientation of the final link. The idea here
is then the opposite of the forward kinematic, we want to know the joint configuration for a
given position. The analytic calculation is detailed also in [74]. It can also be calculated with

Matlab using the Robotic System toolbox and the function robotics Inverse Kinematics.

Given the desired SE3 pose of an end-effector, the inverse kinematics solver computes the
joint configurations that realize the desired end-effector pose. The end effector needs some kind

of calibration to calculate the Inverse Kinematic.

Robot: (7 bodies)

Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)

1 link1 jointl revolute base(0) 1ink2(2)
2 link2 joint2 revolute link1(1) 1ink3(3)
3 link3 joint3 revolute 1ink2(2) link4(4)
4 link4 joint4 revolute 1ink3(3)  link5(5)
5 link5 joint5 revolute link4(4) 1ink6(6)
6 1ink6 joint6 revolute 1ink5(5)  tool(7)
) tool fix1 fixed link6(6)

Fig. 3-2 Inverse kinematic table

In the following case a loop through the trajectory of points to trace the circle. Call the ik
object for each point to generate the joint configuration that achieves the end-effector position.

Store the configurations to use later. The final result is the end effector following the circle.

/’/,\\\
05} ( \7
. \ /)
or L .
A
05 /
0 05 1 1.5 2
X

Fig. 3-3 Inverse Kinematic solver on Matlab

This technique is the most used one to control the position of robot manipulators. How-
ever, it is not adapted to obstacle avoidance, assembly, or any task that requires the robot to

stand alone.
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The kinematic is required for the rest of the study, it’s the base for the comprehension of

the robotic arm. This work will be reused for the simulation.

3.2 Reinforcement Learning Theory

Machine Learning could be considered as a new branch of optimal control theory. There
are different types of Machine Learning: Supervised Learning, Unsupervised Learning, and Re-
inforcement Learning which are the most suitable for robotic. This section presents the principle

of Reinforcement Learning and the tools and mathematical theories needed for it.

3.2.1 Opverall Principle

The main concepts of RL are: the environment, the state, actions, reward and penalties
and the policy. Let’s explain it with a concrete example. In this thesis we basically want to

teach a robotic arm to pick an object on a table and place it in an other place to build a structure.

* We already have the notion of agent which is the robotic arm itself.

e Then the environment which could be reduced to the room in which the robot is, the

table, and the objects. This is where the robot will evolve.

 The first state would be the robot at the starting position then the other state will be the
end effector that ’grasp” the object with magnetization and the final state would be the

object placed at the desired position on the table.

* The transition between each state is made through actions. Here actions are made by

moving the different joints of the 6 DOF arm.

* The reward could be for example +1 if the robot goes closer to the assembly element

penalties are given when it goes in the wrong directions and too far from the target.

* Finally the policy is the strategy of choosing an action given a state in expectation of

better outcomes.

Reinforcement Learning lies between the spectrum of Supervised Learning and Unsuper-

vised Learning, and there are a few important things to note:

* Being greedy doesn’t always work
Some things are easy to do for instant gratification, and some things provide long-term
rewards. The goal is to not be greedy by looking for quick immediate rewards, but instead

to optimize for maximum rewards over the whole training.
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* Sequence matters in Reinforcement Learning
The reward agent does not just depend on the current state, but the entire history of states.

Unlike supervised and unsupervised learning, time is important here.

3.2.2 Markov decision Process (MDP)

MDPs are meant to be a straightforward framing of the problem of learning from interac-
tion to achieve a goal. The agent and the environment interact continually, the agent selecting
actions and the environment responding to these actions and presenting new situations to the
agent. Formally, an MDP is used to describe an environment for reinforcement learning, where

the environment is fully observable. Almost all RL problems can be formalized as MDPs.

1) Markov Property

The Markov propriety states, “The future is independent of the past given the present.”

In mathematical terms, a state S; has the Markov property, if and only if:

P[St+1|5t] = P[St+1’517 ) St] (3-5)

the state captures all relevant information from history.

For a Markov state S and successor state S’, the state transition probability function is de-
fined by,

P;s = ]P)[St+1 = S/|St = 3] (3-6)

It’ s a probability distribution over the next possible successor states, given the current
state, i.e. the agent is in some state, there is a probability to go to the first state, and another

probability to go to the second state, and so on.

2) Markov Process

A Markov process is a memory-less random process, i.e. a sequence of random states 51,
Sy, ... with the Markov property. A Markov process or Markov chain is a tuple (S, P) on state-
space S, and transition function P. The dynamics of the system can be defined by these two

components S and P. It’s a sequence of states (or ’episodes”).

32



3  AUTONOMOUS PATH PLANNING

3) Markov Reward Process

A Markov Reward Process or an MRP is a Markov process with value judgment, saying
how much reward accumulated through some particular sequence that is sampled. An MRP is a
tuple (S, P, R, v) where S is a finite state space, P are the state transition probability function,

R is a reward function where,

Ry = E[Ri41]S: = 5], (3-7)

it says how much immediate reward it is expected to get from state .S at the moment.

There is the notion of the return G, which is the total discounted rewards from time step

t. The goal is to maximize this return,

Gy = Ry + YRy + Y Ryys + ... = Z V" Rtk (3-8)
=0

~v is a discount factor, where vy € [0, 1]. It informs the agent of how much it should care
about rewards now to rewards in the future. If (v = 0), that means the agent only cares about
the first reward. If (v = 1), that means it cares about all future rewards. The goal is to maximize

the total rewards.

The value function informs the agent of how much reward to expect if it takes a particular
action in a particular state i.e. how good is it to be in a particular state, and how good is it to

take a particular action.
The state-value function of an MRP is the expected return starting from state s,

v(s) = E[G|S: = 5], (3-9)

3.2.3 Bellman equation

An important point is the policy 7. It is a distribution over actions given states. A policy

fully defines the behavior of an agent,

m(als) = P[A; = a|S; = 9], (3-10)

There are many different policies for reinforcement learning, Q-Learning and Deep Q

Learning will be described later in the study.
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1) Bellman Expectation Equation

The state-value function can be decomposed into immediate reward R; ., and discounted

value of successor state vV 7(S; + 1) on policy T,

Ur(s) = E[Rps1 + v0r(Se11) Sk = 5], (3-11)

It gives the agent a quantitative result on how good the original state was by adding the

immediate reward for the step and the value it ended up.
Similarly, the action-value function can be decomposed,

0x(5,0) = Ex[Riy1 + 7Gx (Stq1, A1) |Se = 5, Ay = al (3-12)

The sum of the immediate reward (R, 1) for the action a and the action-value (¢, (Sy+1, Ar41)

tells how good it was to take that action from that particular state.

Since there are multiple actions from one state S, and the policy defines a probability

distribution over those actions. The average gives the Bellman expectation equation,

Ur(8) s

Gr(8,a) = a

Fig. 3-4  Graphical state value function

v(s) = > m(als)ga(s, a) (3-13)

From a particular state S, there are multiple actions. There is a probability of taking the
first action and another probability of taking the second action and so on. This probability dis-
tribution is defined by a policy . The state value function is then the sum of probabilities of

the actions under the policy 7 as the equation (3-13) translate.
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When the action value ¢ is reached for the action taken, it tells how good it is to take that

action from that state. Averaging over possible action-values tells how good it is to be in state

S.

G (8,a) < s,a

Fig. 3-5 Graphical action value function

QW(‘S’ Cl) = Rs + Y Z Pss’vﬂ'(sl) (3-14)

The next step is to know the value of being in the next state following the policy onwards.

So the average over possible things that might happen is taken, i.e. possible successor
states the agent might land in, meaning multiplying each state value on policy 7 the agent might
land in by the probability that the agent land in it.

Remember V. (s) tells how good it is to be in a particular state, and ¢, (s, a) tells how good it is

to take a particular action from a given state.

So the Bellman expectation equation for V. (s) is,

Fig. 3-6  Graphical Bellman state value equation

ve(s) = > _m(als)(Ra+7 Y Pusva(s')) (3-15)

35



i Y e 2 1 e S DA 'S

And the Bellman expectation equation for ¢, (s, a) is,

qr(S,a) < s,a

/ '\ !
q,(.\' .a )« a

Fig. 3-7 Graphical Bellman action value equation

Ge(s,0) =R+ 7Y Poy Y _m(d|s)gx(s',d) (3-16)

In practice, the most used equation is the equation of the action value (3-16) and the dif-

ferent forms of it. It is used to give the new value of the next state.

2) Optimal Value Function

The optimal state-value function V*(s) is the maximum value function over all policies.

v*(s) = max v,(s) (3-17)

It” s the best possible solution for an MDP. Of all kinds of different policies that could
be followed in a Markov chain. The goal is the maximum possible rewards that we can extract
from an MDP.

The optimal action-value function ¢*(s, a) is the maximum action-value function over all

policies.

q*(s,a) = max ¢ (s, a) (3-18)

For the state-action pair (s, a), this function gives the expected return for taking action an
in state S, and thereafter following an optimal policy, i.e. the maximum amount of rewards

extracted starting in state S, and taking action a.

If ¢* (s, a) is known, then the problem is solved. It tells the right action to take. The optimal
value function specifies the best possible performance in the MDP. An MDP is solved when the
optimal value function is known. For example in Q Learning the optimal value function is found

when the Q table is completed.
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3.3 Q-Learning

Essentially, Q-learning lets the agent use the environment’s rewards to learn, over time,

the best action to take in a given state.

Q-values are initialized to an arbitrary value, and as the agent exposes itself to the envi-
ronment and receives different rewards by executing different actions, the Q-values are updated

using the equation:

Q(s,a) =r(s,a) + ymaxQ(s',a) (3-19)

The above equation states that the Q-value yielded from being at state s and performing
action a is the immediate reward (s, a) plus the highest Q-value possible from the next state
s’. = here is the discount factor that controls the contribution of rewards further in the future.

Q(s’, a) again depends on Q)(s”, a) which will then have a coefficient of gamma squared.

So, the Q-value depends on Q-values of future states as shown here:

Q(s,a) = vQ(s',a) +v*Q(s",a)..y"Q(s"™, a) (3-20)

Adjusting the value of gamma will diminish or increase the contribution of future rewards.
Since this is a recursive equation, we can start with making arbitrary assumptions for all
g-values. With experience, it will converge to the optimal policy. In practical situations, this is

implemented as an update:

Q(s,a) < vQ(Sy, Ay) + a[Riy1 + 7y max Q(Si11,a) — Q(Si, Ay)] (3-21)

where alpha is the learning rate or step size. This determines to what extent newly acquired

information overrides old information.

3.4 Deep Q learning

Deep Q Learning is used for continuous environments compare to Q Learning which is

used for discrete and rather small environments.

3.4.1 Feedforward neural networks

One of the key features of deep learning is that the computational models, called deep
neural networks are composed of multiple processing layers and can learn representations of
data with multiple levels of abstraction. The learning of a deep neural network (DNN) is made
by using the backpropagation method to indicate how the internal parameters should be changed.

On the other hand, the prediction of the output is calculated by using the forward propagation
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method: the data is fed to the input layer, the neurons do a linear transformation on the input by
the weights and biases, the activation function transforms the linear function into a nonlinear

function, the information moves from layer to layer, and finally output the result.

. hidden units

Fig. 3-8 Neural Network

In Figure 3-8, a generic feedforward Neural Network. The network has three layers, an
input layer with three input units, a hidden layer, and an output layer consisting of two output
units. The number of circles in each layer indicates the dimensions of the corresponding layers.
The circles represent neurons of the network, and arrows represent the connections and data

between the neurons of the network.

The deep neural network is a kind of nonlinear function that usually contains a large number

of parameters. Formally, the feedforward neural network can be expressed as a function

g = fo(r) (3-22)

where x is the input vector, 6 is the parameter vector of the network, and y is the output
values. The goal of training a deep neural network is to find the optimal parameters by mini-
mizing a defined loss function whose gradients concerning the parameters are calculated with

forwarding and backward propagation.

The loss function for our study is the mean squared error of the predicted )V alue and the

target (Q*. This is a regression problem.

n

Loss = %Z(QV@luei —Q)? (3-23)

=1
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3.4.2 Error Backpropagation

Error backpropagation is an efficient technique to evaluate the gradient of an error function
E(w) for a feed-forward neural network. It decreases the complexity of a model. The formula

provides is the following one,

(Sj = h'(aj) Z wkjék (3-24)
k

This tells us that the value of ¢ for a particular hidden unit can be obtained by propagating

the ¢’s backward from units higher up in the network,

Fig. 3-9 Illustration of backpropagation

Ilustration 3-9 of the calculation of ¢; for hidden unit j by backpropagation of the §’s from
those units k to which unit j sends connections. The blue arrow denotes the direction of informa-
tion flow during forwarding propagation, and the red arrows indicate the backward propagation

of error information.

Thus backpropagation procedure can be applied as follow,

1. Apply an input vector x,, to the network and forward propagate through the network to

find the activation of all the hidden and output units.
2. Evaluate the ¢y for all the output units
3. Backpropagate the 4’s to obtain ¢; for each hidden unit in the network.

4. Evaluate the required derivatives.

3.4.3 Weights and Bias

Weights and biases (commonly referred to as w and b) are the learnable parameters of a
machine learning model. Neurons are the basic units of a neural network. In a DNN, each
neuron in a layer is connected to each neuron in the next layer. When the inputs are transmitted

between neurons, the weights are applied to the inputs along with the bias.
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Z(weights X input) + bias (3-25)

Weights control the signal (or the strength of the connection) between two neurons. In
other words, a weight decides how much influence the input will have on the output.
Biases, which are constant, are an additional input into the next layer that will always have the
value of 1. Bias units are not influenced by the previous layer (they do not have any incoming
connections) but they do have outgoing connections with their weights. The bias unit guarantees

that even when all the inputs are zeros there will still be activation in the neuron.

H'/
2w ,‘ A, —
/ =ph+ Za W,
a‘\"
nlll g( )

Fig. 3-10 Weights and Biases

3.4.4 Deep Q Network

In Deep Q-learning, a neural network is used to approximate the Q-value function. The
state is given as the input and the Q-value of all possible actions is generated as the output. The

comparison between Q-learning and deep Q-learning is illustrated below:

40



3  AUTONOMOUS PATH PLANNING

QTable
State-Action | Value

clelo|ela|o|e

Deep Q Learning

Fig. 3-11 Comparison between Q-learning and deep Q-learning

The steps involved in reinforcement learning using deep-Q-learning networks are:

» All the experience is stored by the user in memory
* The next action is determined by the maximum output of the Q-network

* The loss function here is mean squared error, equation (3-23). However, the target or
actual value here is not known as we are dealing with a reinforcement learning problem.
Going back to the Q-value update equation derived from the Bellman equation (3-21),
R+ max Q(Si41, a) represents the target. Since R is the unbiased true reward, the

network is going to update its gradient using backpropagation to finally converge.

3.4.5 Target Network

Since the same network is calculating the predicted value and the target value, there could
be a lot of divergence between these two. So, instead of using one neural network for learning,

two could be used as in the work made in [75, 76].

A separate network to estimate the target could also be used. This target network has
the same architecture as the function approximator but with frozen parameters. For every C
iterations (a hyperparameter), the parameters from the prediction network are copied to the
target network. This leads to more stable training because it keeps the target function fixed (for

a while):
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(r+ ymax O(s'.a": 0 )— Q(s.a: 0; )) }
o

Target Prediction
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Fig. 3-12 Target network

3.5 Hyperparameters
The three most important hyperparameters for your agent are as follows:

* «: The learning rate

* ~: The discount rate

* ¢: The exploration rate

3.5.1 Alpha —deterministic versus stochastic environments

The agent’s learning rate alpha ranges from zero to one. Setting the learning rate to zero
will cause the agent to learn nothing. All of its exploration of its environment and the rewards

it receives will not affect its behavior at all, and it will continue to behave completely randomly.

Setting the learning rate to one will cause the agent to learn policies that are fully specific to
a deterministic environment. One important distinction to understand is between deterministic
and stochastic environments and policies. Briefly, in a deterministic environment, the output is
determined by the initial conditions and there is no randomness involved. The same action is

always taken from the same state in a deterministic environment.

In a stochastic environment, there is randomness involved and the decisions that are made
are given as probability distributions. In other words, a different action is taken from one state
to the other.
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3.5.2 Gamma —current versus future rewards

The agent’s discount rate gamma has a value between zero and one, and its function is to

discount future rewards against immediate rewards.

The agent is deciding what action to take based not only on the reward it expects to get for
taking that action but on the future rewards it might be able to get from the state it will be in

after taking that action.

When a future reward is discounted, it is less valuable than an immediate reward (similar
to how we take into account the time value of money when making a loan and treat a dollar

received today is more valuable than a dollar received a year from now).

The value of gamma chosen varies according to how highly a future reward is valued:

* If a value of zero is chosen for gamma, the agent will not care about future rewards at all

and will only take current rewards into account

* Choosing a value of one for gamma will make the agent consider future rewards as high

as current rewards

3.5.3 Epsilon —exploration versus exploitation

The agent’s exploration rate epsilon also ranges from zero to one. As the agent explores
its environment, it learns that some actions are better to take than others, but what about states
and actions that it hasn’t seen yet? We don’t want it to get stuck on a local maximum, taking
the same currently highest-valued actions over and over when there might be better actions it

hasn’t tried to take yet.

When the epsilon value is set, there will be a probability equal to epsilon that the agent
will take a random (exploratory) action, and a probability equal to 1-epsilon that it will take the
current highest Q-valued action for its current state. The value that is chosen for epsilon affects
the rate at which the Q-table converges and the agent discovers the optimal solution. As the
agent gets more and more familiar with its environment, it is expected to start sticking to the
high-valued actions it’s already discovered and do less exploration of the states it hasn’t seen.
It is achieved by having epsilon decay over time as the agent learns more about its environment

and the Q-table converges on its final optimal values.

There are many different ways to decay epsilon, either by using a constant decay factor or
basing the decay factor on some other internal variable. In the experiments, a constant decat

factor will be applied to epsilon.
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3.6 Reinforcement Learning Process

In a way, Reinforcement Learning is the science of making optimal decisions using expe-

riences. Breaking it down, the process of Reinforcement Learning involves these simple steps:
* Observation of the environment
* Deciding how to act using some strategy
* Acting accordingly
* Receiving a reward or penalty
* Learning from the experiences and refining our strategy
* Iterate until an optimal strategy is found

Different aspects need to be considered here while modeling an RL solution to this prob-

lem: rewards, states, and actions.

3.6.1 Rewards

Since the agent (the 6 DOF Robotic arm, the UR10) is reward-motivated and is going to
learn how to control the arm by trial experiences in the environment, we need to decide the

rewards and/or penalties and their magnitude accordingly. Here a few points to consider:

* The agent should receive a high positive reward for a successful reaching because this
behavior is highly desired

 The agent should be penalized if it goes too far from the target

* The agent should get a slight negative reward for not making it to the destination after
every time-step. ~’Slight” negative because we would prefer our agent to reach late instead

of making wrong moves trying to reach to the destination as fast as possible

3.6.2 State Space

In RL, the agent encounters a state and then takes action according to the state it’s in. The
State Space is the set of all possible situations the UR10 could inhabit. The state should contain
useful information the agent needs to make the right action. The state-space would be composed

of the positions of the end effector for all the combinations of the joint’s angles.

3.6.3 Action Space

The action space is the set of all the actions that the agent can take in a given state. It’s all

the possible joints angles that the UR10 can make.
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3.7 Integration of RL for path planning

3.7.1 RL-related algorithms

Q learning directly uses maximum estimated action value mcaglx Q(St+1, A1) at time step
t+1 to update its action value. It also pays attention to the maximum estimated action value of
the next step and selects optimal actions eventually. The same algorithm as presented below

has been used for different studies for motion planning [77-79].

Algorithm 1 Q-Learning algorithm

Initialize o, €, 7;
Initialize (s, a) arbitrarily;
while s not terminal do
for each episode do
Initialize s;
for each step of episode do
if ¢ <Random Uniform (0,1) then
Choose random a
else
Max a in the Q-Table for s
end if

Take action a, observer, s’;

Q(s,a)—Q(s,a) + [r + max,Q(s', a’)—Q(s,a)];
s5«5';
end for
Update a, ¢, v;
end for

end while

DQN became a research focus when it was invented by Google DeepMind [80, 81]. Itisa
combination of Q-leaning and neural networks. DQN uses NN to approximate Q-values by its

weight 6. The principle of the DQN algorithms is exposed in the following algorithm.
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Algorithm 2 Deep-Q-Learning algorithm

Initialize action-value Network with random weights;
Initialize o, €, 7;
while s not terminal do
for each episode do
Initialize sequence s; = {x} and preprocessed sequenced ¢, = ¢(s1);
for each step of episode do
if ¢ <Random Uniform (0,1) then
Choose random a
else
Predict max Q*(¢(s¢, a; 8) with the Network

end if '

Take action a, observer, s’;

Qs, a)=Q(s,a) + [r + maz,Q(s', a)-Q(s, )]

55’3
end for
Update a, ¢, 7v;
Save 0,

end for
end while

3.7.2 RL applied to the study

With RL, motion planning is realized by attaching destination and safe paths with big re-
ward (numerical value), while obstacles are attached with penalties (negative reward). An opti-
mal path is found according to total rewards from the initial place to the destination. The UR is
first discovering the environment. To have this discovering behavior, the hyperparameters are
set to the lowest for epsilon (exploration) and gamma (current reward). That way the robot is

mapping the workspace and start to ’learn” how its joints work.

The robot is guided only with the rewards which increase for a closer position to the tar-
get. The hyperparameters are updated at each episode. The epsilon and gamma increase which
induces more specific tasks. After a few episodes, the exploration is no more required and the
goal reward is more considered than the current rewards. To maximize the reward, updated
with the Bellman equation and so the hyperparameters, the robot has to find an optimal path.
The UR is then finding a sequence of joints to get to the goal and have the final reward. The
learning rate, alpha, is set to 0.5 to have a good balance between stochastic and deterministic

environments.
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Noise in DQN leads to bias and false selection of next action a’ follows, therefore leading to
over-estimation of next action value Q(s’, a’, 8’). To reduce the over-estimation caused by noise,
the DQN algorithm uses a double network such as the target network explained previously. The
DQN algorithm used for the study is a combination of two different techniques: Experience

Replay to avoid overfitting and a target network.

3.8 Summary

In this chapter, the kinematic of the robotic has been seen. This part is necessary for the
URDEF to simulate the robot arm. The inverse and forward kinematic has also been explained
for the UR10. Then the RL theory was drawn up with mathematical tools such as MDP and the
Bellman equation. Finally, Q-Learning and DQL which are the two Policies used in this study

were explained. The concept of Neural Networks was also detailed.
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4 Simulation and experiment

This chapter will present the process that leads to the final simulation and the experiments.
The software to use for the simulation has to carefully choose, it has to be convenient to use
and powerful enough to obtain results for the experiments. In this chapter, we will compare two
policies the Q-Learning which the most basic policy in RL, and the DQL which uses a Neural
Network instead of a Q-table. The results produced by the simulation of these two policies will

be confronted to find the optimal one for path planning.

4.1 Choosing the environment

4.1.1 ROS and SmartGrasping Sandbox

Robot Operating System (ROS) is an open-source robotics middleware suite. Although
ROS is not an operating system but a collection of software frameworks for robot software
development, it provides services designed for a heterogeneous computer cluster such as hard-
ware abstraction, low-level device control, implementation of commonly-used functionality,
message-passing between processes, and package management. Running sets of ROS-based
processes are represented in a graph architecture where processing takes place in nodes that
may receive, post, and multiplex sensor data, control, state, planning, actuator, and other mes-

sages.

ROS works with topics, nodes, and publisher to communicate with the sensors and robots.
That’s naturally that this study first attempted the use of this common robotic tool. A first sim-
ulation was made using in part the work made by [82]. This simulation aimed to catch a ball
using the shadow hand developed by the shadow robot company. In Figure 4-1 the simulation is

presented, on the left side, the gazebo simulator allows to have a graphical return of the actions.

E— . P —
Real Time: 00 012023 umo: [1602249144.237419, 3344.184000): Grasp quality = 69.7]
Sim Time: 00 00:56:12 Lesess2
frotal Loss:302.57445583865047
Total number of steps:lé
{INFO) [1602249145.741400, 3345.230000): STARTING CONTROLLERS
[INFO) (1602249145.984219, 3345.280000): STARTING CONTROLLERS
[ INFO) [1602249148.277807, 3346,747000): STARTING CONTROLLERS
[IRPO] [1602249148.528585, 3346.850000]: STARTING CONTROLLERS
(INFO] [1602249157.940914, 3352.934000): Grasp quality = 67.01
9123954
[INFO) [1602249159.463769, 3353.973000): STARTING CONTROLLERS
[INPO) [1602249159.718656, 3354.028000]: STARTING CONTROLLERS
(INPO] (1602249169.009186, 3360.094000): Grasp quality = 157.3
123527
Episode:?
(INFO) (1602249170.530279, 3361.169000): STARTING CONTROLLERS
[INFO) [1602249170.768486, 3361.212000): STARTING CONTROLLERS
(INPO] [1602249179.793150, 3367.161000]: Grasp quality = 4.0024
8155595e-06
[INPO] [1602249181.427287, 3368.285000]: STARTING CONTROLLERS

[XW'O] (1602249181.687168, 13368.3)5000): STARTING CONTROLLERS

Fig. 4-1 Shadow hand with ROS + Gazebo
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The first issue that this configuration leads to is the lack of flexibility. There is no possi-
bility to speed up the training by disconnecting the Gazebo simulation, the code needs the right
version of Gazebo, ROS, Python, and Linux without what it can’t be exploited by someone else.
Then the environment was designed in 2018 so without the newest techniques of reinforcement
learning. Finally, ROS is very powerful and convenient but sometimes too complex for simple
tasks.

4.1.2 Robo-gym

In the second place, the study turned to use Robo-gym which was developed by [73].
The team developed Open Ai Gym environments for the use of Mirl00 and the UR10. The
environments are developed in a docker container. The communication between the robot and
the environment is made through Service Manager. This technique is supposed to be more
convenient to use but the project is still not fully stable and many errors occur during the training.

The connection through Service M anager was very slow and couldn’t be properly used.

Fig. 4-2 ”EndEffectorPositioningUR10Sim-v0” in Reality and in Gazebo

4.1.3 Pybullet

After multiple trials and research on different simulators (Gazebo, Mujoco, Unity...) the
choice has been done to use Pybullet. All the programs, the Open Ai Gym environments, the
agent training programs, the Unify Robot Description File (URDF) were made from scratch
using Pybullet for the simulation and the connections to the robot. That way all the simulations
could be fully handled and modify if needed.
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The main advantage of Pybullet is a DIRECT mode i.e. without Graphical Unit Interface

(GUI) which allows to speed up the training. The interface is rather easy to manipulate and

offers many interesting functions to control the robot. Pybullet is also open source so there is

no license to pay for its use (compare to Mujoco) and is updated with a community. Pybullet

is widely for robotic and RL [83-85]. Finally, thank its rather simple interface the training was

faster than with Gazebo for example which need time in every reset to set the “world”.

The graphical interface is presented on the Figure 4-3.

Fig. 4-3 Pybullet GUI

4.1.4 Comparison of the simulation environment

The 3 environments presented are compared in the following tabular.

Tab. 4-1 Comparison of simulations tools

Techniques GUI Open Possibility to
Sourced speed training

General handling

Smart Grasping Sandbox Gazebo Yes No

RoboGym Service Manager Yes No

Pybullet Yes Yes With DIRECT
mode

Complicated to  get
started

Difficult communication
with the robot

Easy to get started
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4.2 Simulation

The building of the simulation is made in 3 different parts that communicate together.

Fig. 4-4 Three different parts of the simulation

4.2.1 State and Action Space

To speed up the training a discrete State Space has been set up. Only the interesting joint
angles were selected for the study and experiments. In their work, [70] used the same way to
proceed by constructing a reasonable environment and state space. A similar technique was
used by [69] where approximate regions instead of accurate measurements are used to define

new state space and joint actions.

Shoulder-pan-joint

Elbow-joint r

Wrist-1-joint

Shoulder-lift-joint

Fig. 4-5 Presentation of the simulated UR
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The possible angles for the 4 joints are as followed:

* Shoulder-pan-joint = [1.8 1.56 1.32 1.08 0.84 0.6 0.36 0.12 -0.12 -0.36 -0.6 -0.84 -1.08
-1.32-1.56 -1.8]

Shoulder-lift-joint = [-0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.1 -1.2 -1.3]
* Elbow-joint =[0.8 0.935 1.07 1.205 1.34 1.475 1.61 1.745 1.88 2.015 2.15]

* Wrist-1-joint = [-0.5 -1.0 -1.5 -2.0]

0.8 -

0.6 1

0.4 1

0.2 1

~0.4

-0.6 1

-0.8 1

-04 -0.2 0.0 0.2 04 0.6 0.8

Fig. 4-6  Workspace map of the UR

These joints were chosen so that the robot could reach almost every part of the table in
front of it as it is presented in Figure 4-6. As long as the target is 20mm away from the end
effector it can catch it with the magnetized end-effector. The collision of the table is directly
managed in the URDF. With all these possible angles the actions of the UR10 can be considered
in our study as continuous. The state space is then 16 x 10 x 11 x 4 = 7040 states. The action
space is 16 + 10 + 11 +4 =41 actions.

4.2.2 Environment

As previously said the environment is where the objects interact to complete a task. Usu-
ally, the environment takes the name of the task it is aimed for. For this part, Open Ai Gym was

used. Gym is a toolkit for developing and comparing reinforcement learning algorithms. This
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means that it’s the same functions that are developed for every environment [86]. The main

functions are:

Init(): It’s the first function called that starts the environment.

Step(): This function is called every time the robot makes an action. In our case Step()

choose a random joint to move in a random position for the training.

Reset(): It simply reset the environment every time an epoch is finished.

Observation(): It gives the state in which the robot is. It returns a 4 vector with the angle

of the joints.

1) Task

The final environment that leads to the assembly is the pick and place environment. It is
a composition of two reach environments. That’s why for the comparison of the policies, only

the reach environment will be considered.

2) Reward

Diftferent rewards are given, all of them are based on the distance between the target and
the end-effector. A simple function for the robot is (4-1) which is updated at each step. A reward
of 10 is given when the object to grasp is reached and then a reward of 20 when the assembly

point is reached. Penalties are given if the arm is going too far.

10 if distance < 0.8m
20 if distance < 0.8m for final destination with the object
R(s,a) = | (1)
-1 if distance > 1m
L else

distance

4.3 Q-Learning

Once the environment is defined, the policy is then applied to it. That’s where the robot is

learning.

4.3.1 Qtable

In Q Learning a Q table is used as the memory. The table is composed of the actions and

states and is updated with the Bellman equation at every step. The table is initialized with zeros.
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Tab. 4-2  Q table initialized with zeros

QTable Shoulder_pan_joint | Shoulder_lift_joint Elbow_joint Wrist_1_joint
18 - -18 | -03 5 -1.3 08 e 215 -05 @ -2.0
|1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 % ]
3 0 0 0 0 0 0 0 0
i
7039 0 0 0 0 0 0 0 =5 0
i 7040 0 0 0 0 0 0 0 0

After multiple episodes of training the Q table is filled with coefficient through the Bell-

man equation.

Tab. 4-3 Q table after training

QTable
1 143 279 |0 131 | 3.78 3.95 | 447 1.46
2 267 323 |0 1.78 | 4.29 143 2.78 253
3 1.58 212 | 0 198 | 1.23 176 | 3.57 234
7039 3.89 145 |0 2.34 | 3.67 3.87 132 297
7040 | 134 056 | 0 2.87 | 183 263 | 1.89 3.65

When the robot exploits the Q table it looks at the line for a certain state. For example in the
state 3, Shoulder-pan-joint = 1.32, Shoulder-lift-joint = -0.3, Elbow-joint = 0.8 and Wrist-1-joint
= -0.5 the optimal action according to the Q table is to move the Wrist-1-Joint to -2.0.

Tab. 4-4 Exploitation of the Q table

QTable Shoulder_pan_joint | Shoulder_lift_joint Elbow_joint Wrist_1_joint
1.8 5 -18 | -03 25 -1.3 08 5 215 -0.5 oS -2.0
'_', 1 1.43 279 |0 131 | 3.78 395 447 146
|2 2.67 323|0 1.78 | 4.29 143 2.78 253
3 1.58 212 | 0 198 | 1.23 1.76 234 357
7039 3.89 145 | 0 2.34 | 3.67 3.87 132 297
7040 1.34 056 | 0 2.87 | 1.83 2.63 1.89 3.65
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4.3.2 Training the agent

First, we’ll initialize the Q-table to a matrix of zeros. Then the training algorithm is created,

it will update this Q-table as the agent explores the environment over one thousand episodes.

In the first part of while not done, it is decided whether to pick a random action or to exploit
the already computed Q-values. This is done simply by using the epsilon value and comparing

it to the random.uniform(0, 1) function, which returns an arbitrary number between 0 and 1.

The chosen action is executed in the environment to obtain the next_state and the re-
ward from performing the action. After that, the maximum Q-value is calculated for the ac-
tions corresponding to the next_state, and with that, the Q-value can easily be updated to the

new_q_value. It is the same principle as the Algorithm 1 in Section 3.7.

One epoch is completed once the end-effector reaches the target with a minimum distance
of 20mm. This distance is a reasonable distance from magnetization. It has been tested up to
50mm with the neodymium magnets presented in Chapter 2 Figure 2-15. The hyperparameters

are updated at each episode, especially € which is decreasing during the learning.

4.3.3 Evaluating the agent

After one thousand episodes the end effector can reach the target with around 25 actions
(Epochs). The training took around 2 hours to be completed. 1000 Episodes is the number of

episodes required to make the robot learn.

400

350

300

250 +

200 +

Epochs

150

100

50

0 200 400 600 800 1000
Episodes

Fig. 4-7 Training after 1000 Episodes
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In a second algorithm, the efficiency of this training was tested for 100 Episodes during

which the robot was only exploiting the Q Table. It has been compared to an untrained robot.

140 120

120

100

100

80

Epochs
Epochs

40

20

60 100

Episodes Episodes

(a) Untrained robot (b) Trained robot

Fig. 4-8 Comparison after training

One step represents a modification of the angle of the robot. This is what gives us feedback
on how good the robot is to find the optimal path. For the untrained robot 32.34 steps were
required to reach the target against 22.52 steps for the trained robot. So after training the robot
learned to reduce the number of steps on average from 10 steps. This is not significant. This
could be explained by the fact that the Q-Learning is not adapted to continuous work such as
this reach task.

4.4 Deep Q Learning

In Deep Q Learning, a Neural Network is used to approximate the Q-value function using
Keras [87] which is a library of T'ensorFlow [88]. Tensorflow is a widely used tool for
Machine Learning.

4.4.1 Define Network

Neural networks are defined in Keras as a sequence of layers. The container for these lay-
ers is the Sequential class. The first step is to create an instance of the Sequential class. Then
the layers are created and added in the order that they should be connected. The first layer in the
network must define the number of inputs to expect. The way that this is specified can differ
depending on the network type, but for a Multilayer Perception model, this is specified by the

input_dim attribute. In the case of the study the first layer is of the size of the state_size which
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is the number of possible moves for the robot, so 4.

A Sequential model could be seen as a pipeline with the raw data fed in at the bottom
and predictions that come out at the top. This is a helpful conception in Keras as concerns
that were traditionally associated with a layer can also be split out and added as separate layers,
clearly showing their role in the transform of data from input to prediction. For example, acti-
vation functions that transform a summed signal from each neuron in a layer can be extracted

and added to the Sequential as a layer-like object called Activation.

The choice of activation function is most important for the output layer as it will define the
format that predictions will take. An activation function is a node, added the output of a layer
or between two layers. Literature also calls it neuron or unit. It allows the output of the neural
network to have resulting values between 0 to 1 or -1 to 1. Some of them are more popular such
as logistic sigmoid, tanh, and ReLU. Activation function takes though a number to perform a

mathematical operation associated with.

(1) Logistic Sigmoid or Sigmoid uses a real value x input to arrange it into the range [0,1],

B 1
N 1+exp—x

o(x) 4-2)

(2) Hyperbolic Tangent or tanh uses a real value x input to arrange it into the range [-1,1],
tanh(z) = 20(2x) — 1 (4-3)

(3) Rectified Linear Unit or ReLU uses a real value input and threshold negative values at

Zero,

f(z) = max(0, ) (4-4)

Following graphs 4-9 show each activation function,

Sigmoid tanh RelU

Fig. 4-9 Three different activation functions
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Thus, for linear regression we use the sum of square error; for binary classification, we use
logistic sigmoid and cross-entropy; for multiclass classification, we use soft-max and cross-

entropy; and for NN ReLU is traditionally more used.

For the study, the regression activation has been chosen because the number of neurons
matches the number of outputs which is the number of actions (41). So that each action weights

each input state.

4.4.2 Compile Network

Once we have defined the network with Sequential and choose the activation function
(ReLu) we head up to compilation which is an efficiency step. It transforms the simple se-
quence of layers that we defined into a highly efficient series of matrix transforms in a format
intended to be executed on the Graphical Process Unit (GPU).

The compilation is always required after defining a model. This includes both before train-
ing it using an optimization scheme as well as loading a set of pre-trained weights from a save
file. The reason is that the compilation step prepares an efficient representation of the network

that is also required to make predictions on the hardware.

Compilation requires several parameters to be specified, specifically tailored to training
the network. Specifically, the optimization algorithm to use to train the network and the loss

function used to evaluate the network is minimized by the optimization algorithm.

The type of predictive modeling problem imposes constraints on the type of loss function
that can be used. For example, below are some standard loss functions for different predictive

model types:

* Regression: Mean Squared Error or "mse”.
* Binary Classification (2 class): Logarithmic Loss, also called cross entropy or ’binary crossentropy”.

* Multiclass Classification (>2 class): Multiclass Logarithmic Loss or ”categorical crossentropy”.

The most commonly used predictive model is the mean square error which is the one also

used for our Deep-Q-Network.

443 Fit Network

Once the network is compiled, it can be fit, which means adapting the weights on a training

dataset. Fitting the network requires the training data to be specified, both a matrix of input
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patterns X and an array of matching output patterns y. So the data were reshaped to get the

input in form of a matrix (state_size, 1),

S1
S2

S = |s3 (4-35)

and the output (action_size, 1),

Q(sy) = | Q(s1,a3) (4-6)

Q(8t7 an)

We denote ((s;) a vector of all action-values in the state s;, and use Q(s;, a;) to specify the
Q-value of taking at in s;. The action value iteration is realized by updating the neural network

by the means of its weights.

The network is trained using the backpropagation algorithm and optimized according to
the optimization algorithm and loss function specified when compiling the model. The opti-
mizer choose is Adam. Adam optimization is a stochastic gradient descent method that is based
on adaptive estimation of first-order and second-order moments. As for the loss function the
mean square error was used. The backpropagation algorithm requires that the network be trained

for a specified number of epochs or exposures to the training dataset.

Each epoch can be partitioned into groups of input-output pattern pairs called batches. This
defines the number of patterns that the network is exposed to before the weights are updated
within an epoch. It is also an efficiency optimization, ensuring that not too many input patterns

are loaded into memory at a time.

4.4.4 Evaluate Network

The network can be evaluated on the training data, but this will not provide a useful indi-
cation of the performance of the network as a predictive model, as it has seen all of this data
before. The performance of the network can be evaluated on a separate datasheet, unseen during
testing. This will provide an estimate of the performance of the network at making predictions

for unseen data in the future.
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The model evaluates the loss across all of the test patterns, as well as any other metrics
specified when the model was compiled, like accuracy. A list of evaluation metrics is returned.

The evaluation of the network is detailed later in the section “evaluating the agent”.

4.4.5 Opverfitting

Overfitting is “’the production of an analysis that corresponds too closely or exactly to a
particular set of data, and may therefore fail to fit additional data or predict future observations
reliably”. An overfitted model is a statistical model that contains more parameters than can be
justified by the data.

It is a model that has learned too much how to do a specific task. The robot won’t be able
to learn from new inputs. Graphically it is observed when the accuracy is getting a fluctuation

in its variations compared to the training.

training set

Fig. 4-10 Overfitting

4.4.6 Make Predictions

Finally, once we are satisfied with the performance of our fit model, we can use it to make
predictions on new data. This is made by calling the predict() function on the model with an
array of new input patterns. The predictions will be returned in the format provided by the
output layer of the network. In the case of a regression problem, these predictions will be in the
format of the problem directly, provided by a linear activation function.

4.4.7 Experience Replay

The DQN is easily overfitted over current episodes [89, 90]. Once DQN is overfitted, it’

s hard to produce various experiences. To solve this problem, Experience Replay stores expe-
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riences including state transitions, rewards, and actions, which are necessary data to perform Q
learning, and makes mini-batches to update neural networks. This technique expects the fol-

lowing merits.

* reduces the correlation between experiences in updating DQN
* increases learning speed with mini-batches

* reuses past transitions to avoid catastrophic forgetting

Algorithm 3 Experience Replay with target network

Initialize the Batch with random selection in the experiences;
for a, r, s, s’ in the Batch do
if done then
Target = reward
else
Target <— r+ v x (max Q*(¢(s441,a;0))
end if ’
Target f = predict(state);
Target f[0][action] = target;
Evaluate the Network;
end for

Experience replay is a rather new technique that provides very good results combined with
a target network has it can be seen in the following sections where the agent is evaluated. Over-
fitting has been avoided through this technique.

4.4.8 Training the agent

The process to train the agent is almost the same as for the Q Learning the first actions
taken are random and the rewards are given according to the distance to the target. Now the
agent has a memory in which it can store the state, action, reward, nextstate, and done. And
after a while, the actions taken are predicted with the Neural Network. In this program, hyper-

parameter are updated at each episode.

A mini-batch is created, the size of this batch is set to 256, it has been determined through
experiences that it’s the best size to obtain good results and minimize the time of learning. The
experience replay is working on that mini-batch so if it’s too small it won’t have enough data to

give results but if it’s too large the calculations take too long.
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Also after experiences, it has been understood that the training of the agent had to be done
on at least 8 times the mini-batch size so that there are enough random values of the batch for

the replay. The weights are saved in a model.h5 file so that they could be reused later.

Algorithm 4 Deep Q Learning with Experience Replay

Initialize the Network with state_size and action_size;
Initialize the Memory D;
Initialize «, €, 7;
for each episode do
Initialize the environment;
Initialize sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s1);
Reshape the states;
for each epochs do
while not done do
if Ramdom value in (0, 1) < epsilon then
Choose Random a
else
Predict max Q*(¢(sy, a; 0) with the Network
end if ’
Take action a;
end while
if Done then
Reward = Reward
else
Reward = -1
end if
Store a, 1, s, s’, done in D;
s+ &
if D > 8 x Batch_size then
Experience Replay;
end if
Update a, €, v;
Save 0,
end for

end for
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4.4.9 Evaluating the agent

For DQL another parameter is to take into account compared to Q-Learning. The network

accuracy needs to be followed to avoid overfitting.
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(a) Learning evolution (b) Network evolution

Fig. 4-11 Evaluation of the agent for reach

On graph (a) we can see the number of steps decreasing Episodes after Episodes. The
training could have been stopped at 100 Episodes but the last 100 Episodes allow to obtain a
more stable model. Graph (b) ensures to not have overfitting. The curve is starting after around
15 Episodes because before that the Experience Replay wasn’t involved. So there is only an
increasing accuracy, non-fluctuation so no overfitting. The training duration was about 30 min-
utes for 200 Episodes.

The distribution of the end effector is shown in the following figures. We can see the
evolution of the position of the robot to reach the target in red. In Episode 1 the robot is exploring
the environment and then it starts to focus on where the reward is the best for him to finally find

the optimal path to the target at Episode 200.
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(a) Tip pose episode=0

(c) Tip pose episode=200

Fig. 4-12 Tip pose

Let’s now compare to an untrained robot during 100 Episodes same as it has been made

for the Q-Learning to observe the efficiency of the training.
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Comparison after training
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If we remove the pic at around 50 steps, the average number of steps is around 3 steps.
Compare to more than 30 Steps for an untrained robot the conclusion is that the robot is very
efficient after training. 3 steps it is the minimum expected for the robot to reach the target for
its starting position to the target. This optimal path can be verified with the GPU. As presented
in the following figures, the robot needs 3 steps that represent the optimal path.

(a) Starting position (b) Step 1, Shoulder-pan-joint to -1.08

(c) Target Reached, Elbow-joint to 1.07

Fig. 4-14  Steps to reach the target
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4.5 Comparison of the Policies

Q Learning was the first policy treated because it’s the easiest to manipulate. It gives the
first view of Reinforcement Learning. The results provided by this technique stay rather low in
terms of efficiency with only a difference of 10 steps compare to the untrained robot. But it has
been interesting to realize through the experience that it is not adapted to the problem.

The second technique which is Deep Q Learning has reused the same concept but added
to that Neural Network. The experiences showed that it was more adapted to the robotic task.
The number of steps was reduced to the minimum (3 steps) after training. The robot found the

optimal path to reach the target. This Policy will be used in the next section to realize the final
assembly.

Tab. 4-5 Comparison of the Policies

Q Learning Deep Q Learning
Number of episodes for results 1000 100
Training time 2 hours 30 minutes
Steps to reach the target 22 3
Adapted to the problem No Yes

4.6 Pick and Place

4.6.1 Environment

The environment describes here is the pick and place which is necessary for the assembly.
As seen in the last section the DQL is more suitable for this task. So the robot is trained to
first reach an assembly element (a red ball) and then place it in a desirable location. Again a
minimum distance is set to obtain the magnetization between the end effector and the assembly
element. After the first element is ”fixed” to the tip, it will be unmagnetized once it has reached
the final location for the assembly. Then the UR will pick another element and so on to get the
desired assembly.
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(a) Reaching the element and grasping with
magnetization (b) Moving the element to the final position

(c) Placing the element to the final postion

Fig. 4-15 Steps to pick and place

4.6.2 Training the agent and Evaluating the Network

The training took about 5 hours and it required around 500 steps. The accuracy doesn’t
present any fluctuation so there is no overfitting. However, we can see that the accuracy is al-
most stabilizing at around 200 Episodes. The training could have been stopped at 200 Episodes
but again for a more stable network, the training was continued until 500 Episodes. The min-
imum number of steps has been also meeting with an average of 5 steps to pick and place the
object. The accuracy of the position is still set at 0.8m so the robot can place the ball with an ac-
curacy of 0.8m. A more accurate model with more positions and longer training could provide
a better positioning but the material used for the study is not able to increase the accuracy. The
behavior of the robot already meets the requirements for this task by finding the optimal path.
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Fig. 4-16 Evaluation of the agent for pick and place

A training oriented to replicate the form of hexagon has also been conducted. The magnetic
balls and pick and place one by one to get a hexagon. The bars couldn’t be added because the
orientation has to be taken into account and the material used for the study is not powerful

enough for such a task.
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(a) Start (b) Reach

(c) Move (d) Place

(e) Reach (f) Place

(g) Final Assembly

69
Fig. 4-17 Assembly of hexagons with the magnetic balls



i Y e 2 1 e S DA 'S

4.7 Summary

First, the software Pybullet has been chosen among other environments for its convenience
for the experiments. Then the process of creating a RL algorithm was detailed. In third place, the
Q-Learning policy was used for experiments. The results obtained with this policy for reaching
a target were not conclusive. The number of steps is the number of modifications of the joint
angle. This is what gave the efficiency of the robot. It could only reduce the number of steps
by 10 compared to an untrained robot. Then the DQL showed better results. With this Policy,
the robot could find the optimal path to the target with the minimum number of 3 steps. Finally,
that technique was kept to make the Pick and Place environment where the robot had to catch
a ball with a magnetized end effector and place it in another desired position. In the end, the

robot did it with an average of 5 steps.
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5 Conclusion

5.1 Thesis Summary

This study aimed to find new techniques for robotic assembly in space. First a design of
bars that allows easier construction of truss structure has been presented. This design could also
reduce the payload for large structures such as telescopes. One of the key techniques is the use
of magnets. Magnetized balls were used as joints between the elements and magnets integrated

on the sides of the bars and the back of the mirror again ease the assembly.

Afterward, the forward and inverse kinematic were presented for a better understanding of
the operation of the UR10. Then the autonomous path planning using reinforcement has been
explained. Reinforcement Learning is a rather complex technique but allows to have optimal
results for path planning. Two policies were detailed, Q Learning and Deep-Q-Learning. This
second policy uses Neural Network to find the best action and is more adapted to a continuous

environment such as robotic.

Finally, the simulation and experiments were detailed. The simulation was first made using
Q-Learning but the results were not conclusive. Then the Deep-Q-Learning has been used to
solve the problem of path planning. The experiments with this policy showed that RL with
Neural Network is well adapted to path planning because the robot was able to reach the target
with the optimal path after training. The robot was able in the end to pick with a magnetize end

effector and place elements for a future assembly.

5.2 Discussion and Future Works

This study has shown how efficient could be the use of reinforcement learning for path
planning. However, the assembly has not been fully made. Taking into consideration the rota-
tion of the wrist and the orientation of the bars would require a very powerful computer. The
training could take more than 3 days if the computer is not adapted. So the future work would
be to have a fully assembled structure using the technique of machine learning with the magne-
tized end effector. Also, more policies could be compared as this field of study is rather new,

more and more techniques are arising every year.
An important future work would also be to test the program on the real robot. Also, a

camera could be used to detect the object in the space to have again a more adaptable manipulator

for the assembly.
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