
学校代码 10699

分 类 号 V448.2

密 级 公开

学 号 2019280213

题目 Research on Autonomous Planning
of Robotic inSpace Assembly Using

Reinforcement Learning

作者 Jorand Gallou

学 科、 专 业 航空宇航科学与技术

指 导 教 师 王明明

申请学位日期 2021年 06月

西 北 工 业 大 学

硕 士 学 位 论 文
(学位研究生)

题目 :Research on Autonomous Planning
of Robotic inSpace Assembly
Using Reinforcement Learning

作 者 : Jorand Gallou

学科、专业 :航空宇航科学与技术

指 导 教 师 : 王明明

2021年 06月

Research on Autonomous Planning of Robotic inSpace Assembly
Using Reinforcement Learning

By

Under the Supervision of Professor
Wang Ming Ming

A Dissertation Submitted to
Northwestern Polytechnical University

In Partial Fulfillment of the Requirement
for the Degree of

Master of Flight Vehicle Design

Xi’an P. R. China
June 2021

ABSTRACT

Abstract

从人类进行太空探索以来，几乎所有的航天器都是在地面上制造和组装，然后集成
到运载火箭中送入轨道。这种方法对有效载荷的尺寸、体积和设计造成了很大的限制。
此外，望远镜和天线的尺寸与它们的性能密切相关。因此，对空间装配进行改进就很有
必要，以摆脱这些限制。通过在轨组装，发射的飞行器只需要搭载这些更大更复杂的结
构所需的模块部件，然后通过机器人进行建造。在建造坚固且轻便的结构方面，桁架组
装发挥了重要作用。桁架装配方案可以用一个简单的结构构建复杂的结构，大大减少了
运载火箭的空间和重量。
求解运动规划是一个找到将物体从起点移动到终点的机械臂有效构型序列的计算问题。
其目标是为机器人在其工作空间中找到运动的最佳路径。在过去的几十年里，强化学习
（RL，reinforcement learning）作为机器人编程的最佳方式之一，提供了更好的自主性和
可靠性。机器学习可以被认为是最优控制理论的一个新分支。本论文的主要研究内容涵
盖了不同的领域，以开发一种新的技术来实现望远镜等结构的自主机器人空间组装。
首先，本文的研究重点是新型的桁杆设计，以实现更加高效的桁架装配。桁杆间的连接
需要先进的机器人技术，涉及双机械臂协调操作的问题。本文提出的使用磁铁进行桁杆
节点连接的方法，大大降低了机器人装配操作的难度。同时，在望远镜组装的实例中介
绍了两种设计方案。一是带槽杆件的设计，望远镜镜面可以在槽内滑动；二是在杆件和
镜子背面附加磁铁，使其固定在结构上。第二种技术以”+”的形式出现，更加轻巧和方
便组装，更具说服力。
其次，本文研究了自主路径规划方法。首先介绍了研究中采用的 UR10机械臂的运动学，
分别对正向和逆向运动学进行了研究。这一部分对于理解机械臂的工作原理是非常必要
的。然后介绍了有助于理解 RL的工具，如马尔科夫决策过程和贝尔曼方程，在学习过
程中用于更新状态。此外，此部分还对 QLearning和 DeepQLearning（DQL）进行了
解释。为了更好地理解 DQL，详细介绍了神经网络。
最后，详细介绍了仿真与实验的过程，并对结果作了深入的分析。本文选择 Pybullet作
为仿真与实验的软件，对 QLearning和 DQL的可到达环境进行了比较。这种环境包括
在最小的步骤内到达目标点的集合内。结果显示最有效的方法是 DQL，它是更适合于
类似于机器人连续任务的策略。最后一部分是关于挑选和放置环境。它是在一个位置拣
选一个磁化球，然后把它放到桌子上的另一个位置。该任务任务非常接近于组装，并给
出了满意的结果。由于采取了经验回放和目标网络方法，在训练过程中没有出现过拟合
现象。

Key words : 运动规划，神经网络，在轨装配，机械臂，强化学习，桁架.

I

西北工业大学硕士学位论文

Since the start of the space conquest, almost all spacecraft have been manufactured and
assembled on the ground, then integrated into a launch vehicle for delivery into orbit. This ap
proach imposes significant limitations on the size, volume, and design of payloads. In addition,
the size of the telescopes and antennas is intimately linked to their performance. Therefore there
is a need for improvement of the space assembly to get rid of these limitations. With the onorbit
assembly, the launched vehicle only embarks the modular components required for bigger and
more complex structures which are then build via a robot. Truss assembly plays an important
role when one needs to build strong and light structures. Truss allows constructing complex
structures from a simple one. It considerably reduces the amount of space and weight in the
launch vehicle.

Motion planning is a computational problem to find a sequence of valid configurations that
moves the object from the start to the goal. The idea is to find the optimal path for a robot in
its environment. In the last few decades reinforcement learning (RL) has appeared to be one of
the best ways to program robots, it provides better autonomy and reliability. Machine learning
could be considered as a new branch of optimal control theory. The main research contents of
this thesis cover different areas for the development of a new technique to realize autonomous
robotic inspace assembly for structures such as telescopes.

Firstly, the research focuses on a new design of bars to build more efficient truss assem
bly. The joint nodes require techniques that involve the most advanced techniques in robotic
and usually require two robotic arms. The concept exposed here uses magnets for the node
connection which considerably reduces the difficulty of the assembly for the robot. Then two
techniques are presented in the example of telescope assembly, one with grooved bars on which
the mirrors are slide and a second one which incorporates magnets to the bars and the back of
the mirror to fix it to the structures. The second technique with the bars in a form of ”+” has
been more conclusive because easier to assemble and lighter.

Secondly, autonomous path planning is studied. First of all the kinematic of the UR10 is
presented which is the robot manipulator used during the research. This part is necessary to
understand how the robot manipulator works. The forward and inverse kinematic are studied.
Then tools to understand RL are exposed such as Markov Decision Process and the Bellman
equation which is used to update the states during the learning process. Also, QLearning and
DeepQLearning (DQL) are explained in this part. Neural Networks are detailed for a better
understanding of DQL.

Finally, the simulation and the experiments are detailed. In this chapter, the evolution of
the experiments is shown. Pybullet is the final software that was chosen to conduct the ex
periments. The Reach environment is compared for QLearning and DQL. This environment

II

ABSTRACT

consists of reaching a target point within the minimum steps. The most efficient technique is
DQL, it is the more suitable policy for continuous tasks such as robotic. The last section is about
the Pick and P lace environment. It is picking a magnetized ball at one position and placing it
in another location on the table. This last task is very close to an assembly and gave promising
results. Overfitting hasn’t occurred during the training thanks to the use of experience replay
and target network.

Key words : Motion Planning, Neural Network, Orbital Assembly, Robotic arm, Rein
forcement Learning, Truss.

III

西北工业大学硕士学位论文

Table of Contents

Abstract .. I
Table of Contents ... IV
Acronyms ... VII
List of Tables .. VIII
List of Figures .. IX
1 Introduction ... 1

1.1 Background ... 1
1.2 Relative Works ... 6

1.2.1 Orbital assembly projects ... 6
1.2.2 Truss Assembly .. 8
1.2.3 Motion planning ... 10
1.2.4 Reinforcement Learning .. 13

1.3 Objective of the study .. 16
1.4 Main Work and Organisation ... 16

2 Truss Assembly ... 18
2.1 Assembly elements .. 18
2.2 Magnetic assembly ... 20

2.2.1 Neodymium magnets ... 20
2.2.2 Presentation of the grooved bars .. 21
2.2.3 Presentation of the flat bars .. 22
2.2.4 Final assembly ... 24
2.2.5 Comparisons of the designs ... 26

2.3 Large structure assembly ... 26
2.4 Summary .. 27

3 Autonomous path planning ... 28
3.1 Robotic Kinematic ... 28

3.1.1 Forward Kinematic .. 29
3.1.2 Inverse Kinematic .. 29

3.2 Reinforcement Learning Theory .. 31
3.2.1 Overall Principle .. 31
3.2.2 Markov decision Process (MDP) ... 32
3.2.3 Bellman equation ... 33

3.3 QLearning ... 37
3.4 Deep Q learning ... 37

3.4.1 Feedforward neural networks .. 37

IV

TABLE OF CONTENTS

3.4.2 Error Backpropagation ... 39
3.4.3 Weights and Bias .. 39
3.4.4 Deep Q Network .. 40
3.4.5 Target Network .. 41

3.5 Hyperparameters .. 42
3.5.1 Alpha –deterministic versus stochastic environments 42
3.5.2 Gamma –current versus future rewards ... 43
3.5.3 Epsilon –exploration versus exploitation ... 43

3.6 Reinforcement Learning Process ... 44
3.6.1 Rewards .. 44
3.6.2 State Space ... 44
3.6.3 Action Space .. 44

3.7 Integration of RL for path planning ... 45
3.7.1 RLrelated algorithms .. 45
3.7.2 RL applied to the study .. 46

3.8 Summary .. 47
4 Simulation and experiment ... 48

4.1 Choosing the environment ... 48
4.1.1 ROS and SmartGrasping Sandbox ... 48
4.1.2 Robogym .. 49
4.1.3 Pybullet .. 49
4.1.4 Comparison of the simulation environment ... 50

4.2 Simulation .. 51
4.2.1 State and Action Space .. 51
4.2.2 Environment ... 52

4.3 QLearning ... 53
4.3.1 Q table .. 53
4.3.2 Training the agent .. 55
4.3.3 Evaluating the agent ... 55

4.4 Deep Q Learning .. 56
4.4.1 Define Network .. 56
4.4.2 Compile Network ... 58
4.4.3 Fit Network .. 58
4.4.4 Evaluate Network ... 59
4.4.5 Overfitting .. 60
4.4.6 Make Predictions ... 60
4.4.7 Experience Replay ... 60
4.4.8 Training the agent .. 61
4.4.9 Evaluating the agent ... 63

V

西北工业大学硕士学位论文

4.5 Comparison of the Policies .. 66
4.6 Pick and Place .. 66

4.6.1 Environment ... 66
4.6.2 Training the agent and Evaluating the Network .. 67

4.7 Summary .. 70
5 Conclusion .. 71

5.1 Thesis Summary ... 71
5.2 Discussion and Future Works .. 71

Bibliography .. 72
Appendix .. 79

A.3 Bars plan ... 79
Acknowledgment ... 81

VI

ACRONYMS

Acronyms

DDPG Deep Deterministic Policy Gradient ;
DNN Deep Neural Network ;
DOF Degree Of Freedom ;
DQL Deep Q Learning ;
DRL Deep Reinforcement Learning ;
GPU Graphical Process Unit ;
GUI Graphical Unit Interface ;
HST Hubble Space Telescope ;
ISA In Space Assembly ;
ISS International Space Station ;
MDP Markov Decision Process ;
NN Neural Network ;
RL Reinforcement Learning ;
RRT Rapidly exploring Random Tree ;
URDF Unified Robot Description File

VII

西北工业大学硕士学位论文

List of Tables

21 Comparison of the assembly forms . 19
22 Comparison of the Policies . 26

31 DenavitHartenberg parameters for the UR10 29

41 Comparison of simulations tools . 50
42 Q table initialized with zeros . 54
43 Q table after training . 54
44 Exploitation of the Q table . 54
45 Comparison of the Policies . 66

VIII

LIST OF FIGURES

List of Figures

11 Evolution of the size of the telescope from [8] 1
12 Relationship between performance and antenna size from Satmarin (2017) . . . 2
13 International Space Station . 2
14 Hubble telescope . 3
15 Large space structures. (Top) Aerobrake, (Bottom) Precision segmented reflec

tor from [18] . 4
16 James Webb telescope unfolding in space . 5
17 Unfolding structures from [27] . 5
18 OnOrbit servicing, manufacturing, and assembly by Made in Space Inc 7
19 Project PULSAR underwater testing . 7
110 JAXA SSPS project . 8
111 SpiderFab bot building support structure . 9
112 Trusselator building triangular truss in continue 9
113 Nodes developed by NASA for truss assembly 10
114 Space cell robot assembling truss in orbit from [46] 10
115 Classification of planning algorithms . 11
116 Rapidly exploring random tree from [50] . 12
117 Attractive and repulsive force field from [54] 12
118 Reinforcement Learning scenario . 13
119 UR5 reach task MuJoCo environment from [65] 14
120 The Four Fetch environments . 14
121 Industrial robot use case scenarios (left: real environment, right simulation en

vironment). Mobile navigation with obstacle avoidance of MiR100 on the top
and end effector positioning of UR10 on the bottom. 15

122 Smart grasping sandbox in the simulator Gazebo 15
123 Graphical summary of the thesis . 17

21 Squares . 18
22 Triangles . 18
23 Hexagons . 19
24 Comparison of the forms . 19
25 Magnets used for the assembly . 20
26 3D models of the grooved bars . 21
27 3D printing of the bars with resin . 21
28 Different views of the grooved bars . 22

IX

西北工业大学硕士学位论文

29 Model of the grooved bars assembly . 22
211 Different views of the flat bars . 23
210 3D model of the Flat bars . 23
212 Model of the flat bars assembly . 24
213 Sequence of assembly for the grooved bars 24
214 Sequence of assembly for the flat bars . 25
215 Final assembly of 7 mirrors with the second design 25

31 Coordinate frames for UR arm. Joints rotate around the zaxes and are pictured
at θi=0 for 1≤i≤6 . 28

32 Inverse kinematic table . 30
33 Inverse Kinematic solver onMatlab . 30
34 Graphical state value function . 34
35 Graphical action value function . 35
36 Graphical Bellman state value equation . 35
37 Graphical Bellman action value equation . 36
38 Neural Network . 38
39 Illustration of backpropagation . 39
310 Weights and Biases . 40
311 Comparison between Qlearning and deep Qlearning 41
312 Target network . 42

41 Shadow hand with ROS + Gazebo . 48
42 ”EndEffectorPositioningUR10Simv0” in Reality and in Gazebo 49
43 Pybullet GUI . 50
44 Three different parts of the simulation . 51
45 Presentation of the simulated UR . 51
46 Workspace map of the UR . 52
47 Training after 1000 Episodes . 55
48 Comparison after training . 56
49 Three different activation functions . 57
410 Overfitting . 60
411 Evaluation of the agent for reach . 63
412 Tip pose . 64
413 Comparison after training . 64
414 Steps to reach the target . 65
415 Steps to pick and place . 67
416 Evaluation of the agent for pick and place . 68
417 Assembly of hexagons with the magnetic balls 69

X

1 INTRODUCTION

1 Introduction

1.1 Background

The assembly of spacecraft on the ground and their integration into a launch vehicle places
many constraints (mass, volume, and load) on the capabilities that can be deployed in space [1],
including adding to the cost of launch. The sizes of the systems such as telescope are limited by
the launch vehicle capabilities [2, 3]. Another issue related to this approach is the technology
obsolescence due to the longterm ground construction and verification process [4]. In contrast,
onorbit assembly offers a pathway to address such limitations in a variety of ways [57].

As the following figures highlight Figure 11 and Figure 12, over time the size of the
structures in space are increasing to gain in performance.

Fig. 11 Evolution of the size of the telescope from [8]

1

西北工业大学硕士学位论文

Fig. 12 Relationship between performance and antenna size from Satmarin (2017)

Different techniques already exist for large structure assembly. The main examples of In
Space Assembly are the Hubble Space Telescope (HST) [9] and the International Space Station
(ISS) [10].

Fig. 13 International Space Station

2

1 INTRODUCTION

Fig. 14 Hubble telescope

Hubble was launched in 1990 and built with onorbit servicing in mind. Astronauts were
trained in the intricacies of the systems and the modularity of the parts. After launch, a servicing
mission ensued to repair the mirror and blurry optics. Five servicing missions over the next 12
years followed, lengthening the lifespan of the telescope and improving its capabilities [11].
HST still produces valuable science today.

The assembly of the ISS involved over 160 spacewalks spanning 1,061 hours. With as
sembly now complete, the station is the size of a football field as illustrated in Figure 13. The
ISS encompasses over 900 cubic meters of pressurized volume and has been home to over 200
people representing 15 countries.

The frequent servicing missions for the HST and the ISS and the Columbia accident moti
vated Northrop Grumman to designed a Hubble Robotic Servicing Vehicle (Lillie 2006), com
plete with two robotic arms having seven degrees of freedom and a 23foot total arm span called
Dextre [12] developed byMacdonald, Dettweiler, and Associates (MDA) of Canada. MDA has
extensive experience in robotic, humanintheloop servicing, having developed Canadarm [13]
for the Space Shuttle and Canadarm2 and Dextre for the International Space Station.

Since the 1970s, many international scientific research institutions have begun to study
techniques for constructing large structures in space [1416]. Studies revealed that trusses are
relative structural simplicity with high packaging efficiency [17] they can be assembled piece
bypiece onorbit. They form the primary support structure in many missions including aero

3

西北工业大学硕士学位论文

brakes [18], telescopes [19], and solar array fields [20]. The elements are designed to be inserted
and removed singly in“random access”, thus eliminating some assembly order constraints
and enabling a physical realization of the construction process.

Fig. 15 Large space structures. (Top) Aerobrake, (Bottom) Precision segmented reflector from [18]

With the development of In Space Assembly (ISA), in addition to space, remote control
robots [21] researchers began to work on fully autonomous space robot systems for autonomous
assembly [22]. Autonomous assembly of large structures in space is a key challenge to imple
ment future missions that will necessitate structures to be selfdeployed as a single piece [15].
In the case of the JamesWebb telescope [23], the assembly is simply done by unfolding the mir
rors once in space as shown in Figure 16. This technique limits the size of the telescope and
increases the payload required. It is not the best way to proceeds to embark such large systems.
Only substructures should be sent to space and then assembly [16]. The substructures already
designed are not very adaptable, it is still composed of modular systems [2426] or unfolding
structures as on Figure 17 [27, 28]. The joints are rather not convenient for robotic assembly
it usually requires the robot to make complex sequencing [29, 30].

4

1 INTRODUCTION

Fig. 16 James Webb telescope unfolding in space

Fig. 17 Unfolding structures from [27]

A robot that could be highly adaptable could be used for many different assemblies and
would be sent only once with no need to take it back to earth for reprogramming. A 6DOF
arm combined with a truss assembly also adaptable to different kind of structures (antenna,
telescopes...) could completely change the space assembly and have benefits in many different
fields;

• In astronomy, these assemblies could enable the construction of telescopes too large to be
fully built on Earth and launched into orbit.

• In Earth science, onorbit truss assembly could reduce the number of satellite launches for
weather and climate observations through the creation of a persistent platform assembled
in space.

5

西北工业大学硕士学位论文

• The payoff is not limited to science and exploration alone. Onorbit manufacturing and
assembly could also provide a payoff for commercial missions, especially communication
satellites in geosynchronous Earth orbit (GEO).

• Onorbit assembly has the potential to provide unique returns for the national security
community. For reconnaissance missions, for example, the orbital assembly could pro
vide the ability to assemble larger apertures than feasible on fully assembled satellites to
achieve greater spatial resolution.

To apply robots in space for construction missions, lots of key robotic technologies are re
quired. Robotbased assembly in the absence of gravity addresses fundamental technical ques
tions that do not exist for terrestrial applications. While teleoperated or partially assisted assem
bly operations are possible on the ground, in space constructions require autonomous assembly
[31]. The robotic assembly process is made through the combination of adaptable perception,
integrated assembly and grasp planning, and compliant control of the manipulators [32]. The
robot has to be able to reach the elements of assembly with precision then grasp them and finally
place them with the right orientation to the desired position for an assembly.

In these challenging techniques, one of the most important technology is motion planning.
The trajectories or steps for an assembly that may be obvious for a human have to be carefully
studied and programmed for a robot. Motion planning, also path planning is a computational
problem to find a sequence of valid configurations that moves the object from the source to des
tination. Robotic motion planning is a wellstudied field at the intersection of optimal control,
artificial intelligence, and applied mechanics [33].

1.2 Relative Works

Orbital assembly is knowing a new age with the use of robots since the late 1990s [13, 21,
34]. Humanassisted assembly will continue to play a role but it’s reaching its limits [35]. A
Spectrum of robotic techniques could be used to supplement human assembly and services such
as the new robot developed by NASA called ”Robonaut” [36, 37] which is costly and pose a risk
to human life. On another hand Reinforcement Learning applied to a robot, the manipulator has
recently gained the attention of industrial and research teams around the world. In this section,
the work related to this studywill be presented for a better understanding of nowadays evolution.

1.2.1 Orbital assembly projects

OnOrbit Manufacturing and Assembly is just arising, in their work [8] explores the ben
efits of it. Made In Space launched a 3D printer to the ISS in partnership with NASA as a

6

1 INTRODUCTION

technology demonstration project. Their work is now going further, they intend to deploy satel
lites that 3D prints itself and built its own solar array. Made in Space is working with NASA
on the program OSAM2 (OnOrbit Servicing, Manufacturing and Assembly) [38] for the next
generation of orbit assembly previously called Archinaut One [39]. 3D printing is a big part of
the project but there also the robotic part. A Universal Robot (UR) is used for the assembly of
the printed truss.

Fig. 18 OnOrbit servicing, manufacturing, and assembly by Made in Space Inc

PULSARwhich stands for Prototype for an Ultra Large Structure Assembly Robot [40] is a
European Project that aims to develop and demonstrate key technologies for inspace assembly
of the primary mirror of a 12m diameter telescope. It’s the autonomous assembly by a robot of
previously developed building blocks. The project focuses on the assembly of a mirror but the
developed technology will apply to other large structures.

Fig. 19 Project PULSAR underwater testing

7

西北工业大学硕士学位论文

The Japanese Aerospace Exploration Agency (JAXA) is leading research on largescale
Structure assembly technology [41]. The Space Solar Power System (SSPS) requires robotic
assembly technology that will be critical for the safe and affordable construction of kilometer
scale structures in orbit. As a first step, they have been researching a robotic assembly technol
ogy capable of assembling a 100meterscale space structure in orbit.

Fig. 110 JAXA SSPS project

1.2.2 Truss Assembly

In the early 1990s, researchers at NASA Langley Research Center realized the potential
for automated assembly of space structures and began the development of a robotic system to
assemble truss structures with equal length members [42]. Truss assembly plays an important
role when one needs to build strong and light structures according to [43]. Truss allows con
structing complex structures from a simple one. It considerably reduces the amount of space
and weight in the launch vehicle. All the projects cited in the previous section use trusses.

A famous project using truss assembly is SpiderFab [44]. The vision of SpiderFab is to
create a ”Satellite Chrysalis”, consisting of raw material in a compact and durable state. It is
producing ”software DNA” assembly instructions that look like the web of a spider built with
trusses to get an operational space system like a solar array for satellites, large antennas, or
telescopes.

8

1 INTRODUCTION

Fig. 111 SpiderFab bot building support structure

One very interesting technology for truss constructions is the ”Trusselator” developed by
NASA for the project. The second generation can build up 50m of 50mm triangular cross
section trusses. With the ESPA payload (320kg) which is an adapter for launching secondary
payloads on orbital launch vehicles, SpiderFab can build up to 7,000m first order Truss of
100mm thickness.

Fig. 112 Trusselator building triangular truss in continue

Once the robot has created a structural element and positioned it properly on the spacecraft
structure, it will require means to bond the element to the structure. This bonding could be
accomplished using welding, mechanical fasteners, adhesives, and other methods.

9

西北工业大学硕士学位论文

Another method is to have a connector such as the one developed by NASA [29]. The
system is shown in Figure 113.

Fig. 113 Nodes developed by NASA for truss assembly

Other techniques involving 2 or more robotic arms are used for truss assembly [45], such
as the one on Figure 114 it can make the robot have different degrees of freedom of operation
and satisfy the operation function of the robot to the greatest extent by cooperating with three
kinds of combined robots, namely, the handling robot, the transfer robot and the assembly robot,
and fully considering the operation characteristics and requirements of the three kinds of robots
[46].

Fig. 114 Space cell robot assembling truss in orbit from [46]

1.2.3 Motion planning

Motion planning, also path planning is a computational problem to find a sequence of valid
configurations that moves the object from the source to destination. Robotic motion planning
is a wellstudied field at the intersection of optimal control, artificial intelligence, and applied
mechanics. In their work [47] and [48] listed the current techniques for motion planning.

10

1 INTRODUCTION

According to [48] motion planning can be divided into two categories, traditional algo
rithms, and Machine Learning (ML) algorithms. The different techniques are presented in Fig
ure 115.

Fig. 115 Classification of planning algorithms

Traditional algorithms

Graphsearchbased algorithms can be divided into the depthfirst search, breadthfirst
search firstly introduced by Dijkstra’s algorithm [49], and bestfirst search. The depthfirst
search algorithm builds a search tree as deep and fast as possible from origin to destination until
a proper path is found. The breadthfirst search algorithm shares similarities with the depthfirst
search algorithm by building a search tree. The search tree in the breadthfirst search algorithm,
however, is accomplished by extending the tree as broad and quick as possible until a proper
path is found.

Samplingbased algorithms randomly sample a fixed workspace to generate suboptimal
paths. The rapidlyexploring random tree (RRT) and the probabilistic roadmap method (PRM)
are two algorithms that are commonly utilized in motion planning. RRT is an algorithm de
signed to efficiently search nonconvex, highdimensional spaces by randomly building a space
filling tree. The tree is constructed incrementally from samples drawn randomly from the search
space and is inherently biased to grow towards large unsearched areas of the problem [50], [51].

11

西北工业大学硕士学位论文

Fig. 116 Rapidly exploring random tree from [50]

The artificial potential field (APF) is based on the uptake of the robot to a particle, con
strained to move in an APF [52]. The method is inspired by the electrical charges’concept
introduced by Khatib in [53], whereby the objects in the configuration space, where the vehicle
is traveling, are presumed to emit potential charges. The goal or target position is assumed to
generate an attractive force that pulls the robot towards it. On the other hand, the obstacle cre
ates a repulsive force the pushes the robot away as presented in Figure 117 [54].

Fig. 117 Attractive and repulsive force field from [54]

12

1 INTRODUCTION

Machine Learning algorithms

Supervised Learning is the machine learning task of learning a function that maps an in
put to an output based on example inputoutput pairs. It infers a function from labeled training
data consisting of a set of training examples. One technique wellknown is the support vector
machine (SVM) [55] for classification. The basic principle of SVM is about drawing an optimal
separating hyperplane between inputted data by training a maximum margin classifier. Other
wellused techniques are Longshort term memory LSTM [56] which is a variant of a recur
rent neural network, Monte Carlo tree search (MCTS) which is the combination of Montecarlo
method [57] and search tree [58].

Reinforcement Learning (RL) is a technique where the agent is learning from its experi
ments. The main policies in RL are QLearning where the agent updates a QTable through the
Bellman equation at each step, and the second one is the DeepQLearning, instead of a QTable
a Neural Network is used at each episode, to that technique Experience Replay is usually used.
These policies will be described in detail in the next section and Chapter 3.

Policy Gradient is a probability distribution P{a|s, θ} = πθ(a|s) = π(a|s, θ) that is used
to select action a in state s, where weight θ is a parameter matrix that is used as an approximation
of policy π(a|s). Policy gradient method [59] seeks an optimal policy and uses it to find optimal
actions [60, 61].

1.2.4 Reinforcement Learning

To solve the motion planning issues RL will be used. Rather than programming in RL, the
agent is learning from its experiments. The typical framing scenario is: an agent takes actions
in an environment, which is interpreted into a reward and a representation of the state, which
are fed back into the agent.

Fig. 118 Reinforcement Learning scenario

13

西北工业大学硕士学位论文

It has been growing rapidly, providing a wide variety of learning algorithms like Deep Q
Learning, rather than using value iterations as in the Markov Decision Process (MDP) to deter
mine the Qvalues and find optimal Qfunction, we alternatively use a function approximation
to estimate optimal Qfunction i.e. using Deep Neural Networks (DNN) [6264]. On the fol
lowing figure from [65], a UR5 is reaching a target in Mujoco using RL.

Fig. 119 UR5 reach task MuJoCo environment from [65]

More and more projects are starting to use Reinforcement Learning to program 6 Degree
of Freedom (DOF) Robotic arms using deep learning [6668], and QLearning [69, 70]. The
tossing bot learns to pick objects in a box and throw them in another [71] with reinforcement
learning. An interesting project is Fetch. Four different tasks are already proposed, FetchReach,
FetchPush, FetchSlide, and FetchPickAndPlace. In all Fetch tasks, the goal is 3dimensional
and describes the desired position of the object (or the endeffector for reaching). Rewards are
sparse and binary: The agent obtains a reward of 0 if the object is at the target location (within
a tolerance of 5 cm) and −1 otherwise [72].

(a) FetchReach (b) FetchPush (c) FetchSlide (d) FetchPickPlace

Fig. 120 The Four Fetch environments

14

1 INTRODUCTION

Great work has also been done by [73] in order to increase the use of Deep Reinforcement
Learning (DRL) with real robots and reduce the gap between simulation and realworld robotics,
they proposed an opensource toolkit: robogym. It’s an environment of Openai Gym which is
a tool for machine learning in robotics. The environments are created for two robots the UR10
and MiR100.

Fig. 121 Industrial robot use case scenarios (left: real environment, right simulation environment). Mobile
navigation with obstacle avoidance ofMiR100 on the top and end effector positioning of UR10 on the bottom.

The ShadowRobot Company developed an environment called ”Smart Grasping Sandbox”
with all usuals to get started with their gripper and the UR10. They used Machine learning to
improve the grip and the accuracy of it. In the simulation, the robot grasps a ball, lifts it, and
then shakes the hand to check if the ball has correctly been grasped then a reward is given and
another experiment is started. The program is very convenient and rather easy to use andmodify.
It provides a variety of tools and libraries to get started quickly with playing with the robot: the
robotic framework (ROS), the simulator (Gazebo), or also the planning libraries (MoveIt!).

Fig. 122 Smart grasping sandbox in the simulator Gazebo

15

西北工业大学硕士学位论文

1.3 Objective of the study

The idea of this study is to use Reinforcement Learning for path planning and so improve
the inspace assembly through this technique. Machine Learning has gained attention recently
to control robot manipulators and a lot of work has been done to adapt it to the different fields
of study such as Orbital Assembly. The complexity of this technique is compensated by the
accuracy and autonomy it can produce. The main objectives here are:

• to provide a new design of bars to ease and gain in performance for future assembly of
truss structures,

• to generate a program from scratch that enables to use UR10 with RL,

• to test the efficiency of the RL on a task similar to an assembly task which is picked and
place.

The engineering problem has two concerns, first the algorithm for motion planning has
to be resilient. It aims to be autonomous, robust to perturbations, and using few computing
power. Then the truss elements have to be simplified for the robotic assembly, especially at the
joint nodes and be fully adaptable to different kind of structures (telescopes, aerobrakes, solar
array...).

1.4 Main Work and Organisation

The second Chapter is dealing with a new design of bars for truss structures to ease the
assembly of the robot. The main idea is to think of a more efficient way to assemble mirrors for
telescopes. Different forms of assembly (Triangles, Squares, Hexagons) are firstly compared
to get the minimum number of bars and so lighten the structure. Then two types of bars are
presented, one with the groove in which the mirrors are slide and the second one in form of
a ”+” from the side. For this second design, magnets are used for the assembly of the mirror
which also facilitates the assembly for the robot. The bars are bind together with magnetic balls
instead of rather complex joint nodes.

In Chapter 3 the Kinematic of the UR10 is described. Then it deals with path planning
which is made using Reinforcement Learning. Tools to understand machine learning are de
tailed. The Markov Decision Process (MDP) and the Bellman equation for updating the Q
values are the two main techniques used in the reinforcement. First, the Q Learning Policy is
explained and then the Deep Q Learning as well as Neural Networks.

Then in Chapter 4, the simulation is detailed. The choice of the software for the study is
explained. During the first steps of the study different environments of work were tested before

16

1 INTRODUCTION

to find the optimal one for the task. The program is made from scratch and the different part of
a RL program is explained in this chapter. The main objectives in the experiments are, first to
reach a target and compare the efficiency of the Policies for this task and then to pick and place
an object.

Finally, a conclusion is made and a discussion is made about the study and the future works.
The figure below is a summary of the thesis work.

Fig. 123 Graphical summary of the thesis

17

西北工业大学硕士学位论文

2 Truss Assembly

The joint at the assembly nodes is a crucial part. For a robotic assembly, it is the part that
requires the most advanced techniques but it could be facilitated with a wellengineered process.
In this Chapter, different forms will be discussed for the assembly of mirrors and then magnetic
joints will be presented.

2.1 Assembly elements

Telescopes are the most common large structures that require onorbit assembly. The ac
curacy of a telescope depends in part on the size of the mirrors. For onorbit assembly, the main
constraint is the payload that the rocket can send into space. In this section, different forms
will be compared for the assembly of mirrors for telescopes. A surface of 25m2 is taken as a
reference and size of 1.48m for the bars.

1) Squares

For a total surface of 26.2 m2 of mirrors, the assembly with squares requires 32 bars of
1.48m.

Fig. 21 Squares

2) Triangles

For a total surface of 22.7 m2 of mirrors, the assembly with triangles requires 42 bars of
1.48m.

Fig. 22 Triangles

18

2 TRUSS ASSEMBLY

3) Hexagons

For a total surface of 35.8 m2 of mirrors the assembly, squares require 72 bars of 0.74m
which is 36 bars of 1.48m.

Fig. 23 Hexagons

4) Comparison

The Hexagon is the form that allows the minimum of bars compare to the surface that it
could offer for the mirrors. On the Figure 24 the red circle represents a surface of 25m2 So that
form will be chosen for the rest of the assembly.

Fig. 24 Comparison of the forms

Tab. 21 Comparison of the assembly forms

Number of bars (1.48m) Area of mirrors

Squares 32 26.2m2

Triangles 42 22.7m2

Hexagons 36 35.8m2

19

西北工业大学硕士学位论文

2.2 Magnetic assembly

The assembly of truss structures is made with a rather complicated mechanism such as the
one presented by NASA in [29] in Figure 113. Some other techniques require two robotic arms
as in Figure 114 from [46]. The magnets used will be first presented then the concept of a new
design for truss assembly bars. The plans of the bars used in this section are detailed in the
appendix.

2.2.1 Neodymium magnets

Neodymium is a chemical elementwith the symbolNd and atomic number 60. Neodymium
belongs to the lanthanide series and is a rareearth element. To make the neodymium mag
nets it is alloyed with iron, which is a ferromagnet. Neodymium magnets (actually an alloy,
Nd2Fe14B) are the strongest permanent magnets known. A neodymiummagnet of a few grams
can lift a thousand times its weight.

Neodymiummagnets have a very high coercive force, and there will be no demagnetization
and magnetic changes under the natural environment and general magnetic field conditions.
Assuming under an appropriate environment, even after a long period of use, the magnetic
performance of the magnet will not be greatly reduced. Therefore, in practical applications, we
often ignore the influence of time on the magnetic performance of neodymium magnets. The
pictures below are presented the magnets used for the assembly.

Fig. 25 Magnets used for the assembly

Usually, the magnets are named with a letter (N, M, H, SH, UH our EH) and a number (40,
42, 45...). The letter gives information about the maximum temperature of use. The number
corresponds to the maximum rate of energy. In our case, we choose a magnet which is N52 so
the maximum temperature of use is 80° and the energy of magnetization is the maximum we
could find. The magnet can load 0.2 kg which is more than enough for the size of the bars.

20

2 TRUSS ASSEMBLY

2.2.2 Presentation of the grooved bars

The bars are 3D printed with a groove for the assembly of the mirror. Neodymium cubes
are inserted in the center of the bars to enable connection with the other bars through a magnetic
ball.

(a) Model view of the grooved bar
(b) Joint nodes

Fig. 26 3D models of the grooved bars

The following figure presents the bars during the printing. A 3D printer using resin has
been used. A first model was made using polylactic acid (PLA) but the final result was not
enough accurate for the assembly. In this method, the pieces are printed in a resin bath by
solidifying the resin layer by layer with a UV lamp. This technique allows more continuous
elements.

Fig. 27 3D printing of the bars with resin

21

西北工业大学硕士学位论文

In the following figures, the different views of the bars are presented.

(a) Side view of the
grooved bar

(b) Top view of the
grooved bar

(c) Assembly of two bars

Fig. 28 Different views of the grooved bars

The 3D model of the expected final assembly with the hexagonal mirrors is presented in
the following figures.

(a) One mirror (b) Mirrors assembly of the grooved
bars

Fig. 29 Model of the grooved bars assembly

2.2.3 Presentation of the flat bars

This second design of the bars for the truss is in a form of a ”+”. This form uses less resin
than the grooved bars. A magnet is placed in the middle of the flat bar. The magnet is a small

22

2 TRUSS ASSEMBLY

(a) Side view of the flat bar

(b) Top view of the flat bar

(c) Assembly of two bars

Fig. 211 Different views of the flat bars

cylinder with a diameter of 3mm and a high of 1.5mm. The bars are 2mm thick so the magnet
easily fits in it. The same magnet is glued on the back of the 6 sides of the mirror.

Fig. 210 3D model of the Flat bars

The advantage of this form is that it’s symmetric so there is no need for the robot to take
care of the orientation for the assembly. The assembly is simplified compared to the first design.
The elements are just fixed together with magnets and the mirror is simply posed on top of the
hexagon, no need to slide the mirror into the slit.

The different views of the bars are presented in Figure 211 and the model of the assembly
in Figure 212.

23

西北工业大学硕士学位论文

(a) One mirror (b) Assembly of the mirrors with flat bars

Fig. 212 Model of the flat bars assembly

2.2.4 Final assembly

For the grooved bars, at the beginning the robot assembles the four first bars, then the
mirror is slide on the grooves, and finally, the contour of the closed with the two last bars.

Fig. 213 Sequence of assembly for the grooved bars

The assembly of one mirror is 14.8cm in length, this measure is made from one side to the
opposite one. With these grooved bars, the thickness of the bars is to be taken into account for
the total assembly. For the 7 mirrors assembly, the size from bottom to top is 42.5cm length,

24

2 TRUSS ASSEMBLY

compared to 40.9cm for the theoretical assembly on the software. It represents an error of 3.9%.
For a telescope, this design takes a part of the mirror’s reflection due to the grooves.

(a) Assembly of the 6 bars
(b) Back view of a mirror with
the magnets

(c) Final assembly of one mirror

Fig. 214 Sequence of assembly for the flat bars

For the second design, the assembly is much faster, first the 6 bars and assemble and then
the mirror is fixed just by posing it. The magnets allow the mirror to get in the right position, it
plays the same role as the grooves.

Fig. 215 Final assembly of 7 mirrors with the second design

The average size measured of one mirror is 13.8cm and the total assembly 41.5cm compare

25

西北工业大学硕士学位论文

to 13.6cm and 40.2cm for the assembly on the software. The error is 3.2% for this assembly.

2.2.5 Comparisons of the designs

The second concept of bars is much more relevant than the first one. The flat bars are
lighter, weighing about 7g compared to 10g for the grooved bars. The total size of the assembly
is 42.5cm and 41.5cm respectively for the grooved bars and the flat bars.

Another important point is that the flat bars take less space in the assembly between the
mirrors. It is 1cm smaller but the surface of the mirrors is greater, the total surface is exploited.
With the grooved bars, the surface lost is 69.3cm2, due to the 0.3cm grooves, for a total surface
of mirrors of 1022cm2. It represents 14.7% of the total surface of mirrors. The grooved bars
are also more difficult to assemble with the mirrors for the robot because they have to be slide
on them.

The comparison of the designs is summarized in the following tabular.

Tab. 22 Comparison of the Policies

Grooved bars Flat bars

System to fix the mirror Slide in Grooves Magnets
Steps for assembly 3 2
Weight 10g 7g
Theoretical size 40.9cm 40.2cm

Assembly size 42.5cm 41.5cm

Assembly error 3.9% 3.2%
Lost surface 69.3cm2 None

This technique using magnets ease the assembly. Compare to [29] where the nodes are
used to position the receptacles to form a specific structural geometry. The receptacles form
half of the joint and include an alignment groove that is grasped by the endeffector receptacle
fingers to fix the endeffector position during strut installation. The other half of the joint is
affixed to the strut and includes a locking nut that is rotated by a nut driver on the endeffector
as shown in Figure 113.

2.3 Large structure assembly

These designs of truss bars address a new pathway for large structure assembly. Instead
of unfolding telescopes such as the James Webb telescopes, this bars using magnets allows to
build directly the structure into space. The assembly of mirrors is made close to a telescope

26

2 TRUSS ASSEMBLY

shape in order to prove the feasibility of this project for this type of large structures. Finally the
path planning is eased with a system using magnets. The grasping part can be removed from
the problems because the bars are directly grasped with a magnetized end effector. The same
remark can be applied to the joint nodes which made by magnets as well. Third point is the
orientation of the bars which is also facilitated the path planning, the manipulator doesn’t need
to take the orientation of the bars for the assembly.

2.4 Summary

The best design as it has been shown is the second one using flat bars and magnets for the
fixation of the mirror. This design ease the assembly for the robot. First, the grasping is made
using magnetization so no need for special grasping. There is no lost surface and the bars are
lighter which is a very important consideration for an onorbit assembly where the payload is
very costly. Then because of the symmetry of the bars, the assembly needs to care only about
the orientation of the element on the z ax. Finally, this design can easily be printed in space
same as the ”Trusselator” which considerably reduces the payload for big structures assembly.

27

西北工业大学硕士学位论文

3 Autonomous path planning

As said before motion planning, also path planning is a computational problem to find
a sequence of valid configurations that moves the object from the source to destination. In
this Chapter, the kinematic of the Universal Robot (UR) is firstly presented. Then the path
planning is made using reinforcement learning which is a technique that perfectly fits robotic
when autonomy and adaptability are expected.

3.1 Robotic Kinematic

Robotic motion planning deals with robot kinematics in low dimensions, with constraints
such as collision avoidance and selfintersection. The kinematic state space is often referred
to as the configuration Cspace, equal to the number of DoF. Robot kinematics governs how
linkages move, restricting the feasible configuration space due to collision and linkage geome
try. In some cases, continuous planning for robot kinematics can be turned into decisions of a
discrete set of actions, resulting in discrete planning. The study of the Kinematic equation will
be conducted to have a description of the movement of the robotic arm.

Fig. 31 Coordinate frames for UR arm. Joints rotate around the zaxes and are pictured at θi=0 for 1≤i≤6

28

3 AUTONOMOUS PATH PLANNING

3.1.1 Forward Kinematic

We start by the forward Kinematic that allows us to describe the position of the end effector
as a function of joint angles:

B6(θ1, θ2, θ3, θ4, θ5, θ6) = B1(θ1)1B2(θ2)2B3(θ3)3B4(θ4)4B5(θ5)5B6(θ6)6 = (31)
⎡

⎢⎢⎢⎢⎣

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

⎤

⎥⎥⎥⎥⎦
(32)

where Bn(θn)n describes the desired joint angles of the robot. The calculation is detailed
in [74], we finally obtain the Denavit–Hartenberg parameters:

Tab. 31 DenavitHartenberg parameters for the UR10

Kinematic θ [rad] a[m] d[m] α [rad] Dynamics Mass
[kg]

Center of Mass [m]

Joint 1 0 0 0.1273 π/2 Link 1 7.1 [0.021, 0.000, 0.027]
Joint 2 0 0.612 0 0 Link 2 12.7 [0.38, 0.000, 0.158]
Joint 3 0 0.5723 0 0 Link 3 4.27 [0.24, 0.000, 0.068]
Joint 4 0 0 0.1639 π/2 Link 4 2 [0.000, 0.007, 0.018]
Joint 5 0 0 0.1157 π/2 Link 5 2 [0.000, 0.007, 0.018]
Joint 6 0 0 0.0922 0 Link 6 0.365 [0.000, 0.000, 0.026]

All results presented in the table are used to create the Unified Robot Description File
(URDF) later in this study for the experiments and simulations.

3.1.2 Inverse Kinematic

The analytic inverse kinematics problem is to find the set of joint configurations Q = qi

where qi = (θi1, ..., θ
i
6) ∈ [0, 2π] that satisfies :

B6(θ
i
1, θ

i
2, θ

i
3, θ

i
4, θ

i
5, θ

i
6) = (Bd

6) = (33)

⎡

⎢⎢⎢⎢⎣

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

⎤

⎥⎥⎥⎥⎦
(34)

29

西北工业大学硕士学位论文

Where (Bd
6) describes the desired position and orientation of the final link. The idea here

is then the opposite of the forward kinematic, we want to know the joint configuration for a
given position. The analytic calculation is detailed also in [74]. It can also be calculated with
Matlab using the Robotic System toolbox and the function robotics InverseKinematics.

Given the desired SE3 pose of an endeffector, the inverse kinematics solver computes the
joint configurations that realize the desired endeffector pose. The end effector needs some kind
of calibration to calculate the Inverse Kinematic.

Fig. 32 Inverse kinematic table

In the following case a loop through the trajectory of points to trace the circle. Call the ik
object for each point to generate the joint configuration that achieves the endeffector position.
Store the configurations to use later. The final result is the end effector following the circle.

Fig. 33 Inverse Kinematic solver onMatlab

This technique is the most used one to control the position of robot manipulators. How
ever, it is not adapted to obstacle avoidance, assembly, or any task that requires the robot to
stand alone.

30

3 AUTONOMOUS PATH PLANNING

The kinematic is required for the rest of the study, it’s the base for the comprehension of
the robotic arm. This work will be reused for the simulation.

3.2 Reinforcement Learning Theory

Machine Learning could be considered as a new branch of optimal control theory. There
are different types of Machine Learning: Supervised Learning, Unsupervised Learning, and Re
inforcement Learning which are the most suitable for robotic. This section presents the principle
of Reinforcement Learning and the tools and mathematical theories needed for it.

3.2.1 Overall Principle

The main concepts of RL are: the environment, the state, actions, reward and penalties
and the policy. Let’s explain it with a concrete example. In this thesis we basically want to
teach a robotic arm to pick an object on a table and place it in an other place to build a structure.

• We already have the notion of agent which is the robotic arm itself.

• Then the environment which could be reduced to the room in which the robot is, the
table, and the objects. This is where the robot will evolve.

• The first state would be the robot at the starting position then the other state will be the
end effector that ”grasp” the object with magnetization and the final state would be the
object placed at the desired position on the table.

• The transition between each state is made through actions. Here actions are made by
moving the different joints of the 6 DOF arm.

• The reward could be for example +1 if the robot goes closer to the assembly element
penalties are given when it goes in the wrong directions and too far from the target.

• Finally the policy is the strategy of choosing an action given a state in expectation of
better outcomes.

Reinforcement Learning lies between the spectrum of Supervised Learning and Unsuper
vised Learning, and there are a few important things to note:

• Being greedy doesn’t always work
Some things are easy to do for instant gratification, and some things provide longterm
rewards. The goal is to not be greedy by looking for quick immediate rewards, but instead
to optimize for maximum rewards over the whole training.

31

西北工业大学硕士学位论文

• Sequence matters in Reinforcement Learning
The reward agent does not just depend on the current state, but the entire history of states.
Unlike supervised and unsupervised learning, time is important here.

3.2.2 Markov decision Process (MDP)

MDPs are meant to be a straightforward framing of the problem of learning from interac
tion to achieve a goal. The agent and the environment interact continually, the agent selecting
actions and the environment responding to these actions and presenting new situations to the
agent. Formally, an MDP is used to describe an environment for reinforcement learning, where
the environment is fully observable. Almost all RL problems can be formalized as MDPs.

1) Markov Property

TheMarkov propriety states,“The future is independent of the past given the present.”
In mathematical terms, a state St has the Markov property, if and only if:

P [St+1|St] = P [St+1|S1, ..., St] (35)

the state captures all relevant information from history.

For a Markov state S and successor state S′, the state transition probability function is de
fined by,

P ′
ss = P[St+1 = s′|St = s] (36)

It’s a probability distribution over the next possible successor states, given the current
state, i.e. the agent is in some state, there is a probability to go to the first state, and another
probability to go to the second state, and so on.

2) Markov Process

A Markov process is a memoryless random process, i.e. a sequence of random states S1,
S2, ... with the Markov property. A Markov process or Markov chain is a tuple (S, P) on state
space S, and transition function P . The dynamics of the system can be defined by these two
components S and P . It’s a sequence of states (or ”episodes”).

32

3 AUTONOMOUS PATH PLANNING

3) Markov Reward Process

A Markov Reward Process or an MRP is a Markov process with value judgment, saying
how much reward accumulated through some particular sequence that is sampled. An MRP is a
tuple (S, P , R, γ) where S is a finite state space, P are the state transition probability function,
R is a reward function where,

Rs = E[Rt+1|St = S], (37)

it says how much immediate reward it is expected to get from state S at the moment.

There is the notion of the return Gt, which is the total discounted rewards from time step
t. The goal is to maximize this return,

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑

k=0

γkRt+k+1 (38)

γ is a discount factor, where γ ∈ [0, 1]. It informs the agent of how much it should care
about rewards now to rewards in the future. If (γ = 0), that means the agent only cares about
the first reward. If (γ = 1), that means it cares about all future rewards. The goal is to maximize
the total rewards.

The value function informs the agent of how much reward to expect if it takes a particular
action in a particular state i.e. how good is it to be in a particular state, and how good is it to
take a particular action.

The statevalue function of an MRP is the expected return starting from state s,

v(s) = E[Gt|St = S], (39)

3.2.3 Bellman equation

An important point is the policy π. It is a distribution over actions given states. A policy
fully defines the behavior of an agent,

π(a|s) = P[At = a|St = S], (310)

There are many different policies for reinforcement learning, QLearning and Deep Q
Learning will be described later in the study.

33

西北工业大学硕士学位论文

1) Bellman Expectation Equation

The statevalue function can be decomposed into immediate reward Rt+1, and discounted
value of successor state γV π(St + 1) on policy π,

vπ(s) = E[Rt+1 + γvπ(St+1)|St = s], (311)

It gives the agent a quantitative result on how good the original state was by adding the
immediate reward for the step and the value it ended up.

Similarly, the actionvalue function can be decomposed,

qπ(s, a) = Eπ[Rt+1 + γqπ(St+1, At+1)|St = s, At = a] (312)

The sumof the immediate reward (Rt+1) for the action a and the actionvalue (γqπ(St+1, At+1)
tells how good it was to take that action from that particular state.

Since there are multiple actions from one state S, and the policy defines a probability
distribution over those actions. The average gives the Bellman expectation equation,

Fig. 34 Graphical state value function

vπ(s) =
∑

π(a|s)qπ(s, a) (313)

From a particular state S, there are multiple actions. There is a probability of taking the
first action and another probability of taking the second action and so on. This probability dis
tribution is defined by a policy π. The state value function is then the sum of probabilities of
the actions under the policy π as the equation (313) translate.

34

3 AUTONOMOUS PATH PLANNING

When the action value q is reached for the action taken, it tells how good it is to take that
action from that state. Averaging over possible actionvalues tells how good it is to be in state
S.

Fig. 35 Graphical action value function

qπ(s, a) = Rs + γ
∑

Pss′vπ(s
′) (314)

The next step is to know the value of being in the next state following the policy onwards.

So the average over possible things that might happen is taken, i.e. possible successor
states the agent might land in, meaning multiplying each state value on policy π the agent might
land in by the probability that the agent land in it.
Remember Vπ(s) tells how good it is to be in a particular state, and qπ(s, a) tells how good it is
to take a particular action from a given state.

So the Bellman expectation equation for Vπ(s) is,

Fig. 36 Graphical Bellman state value equation

vπ(s) =
∑

π(a|s)(Rs + γ
∑

Pss′vπ(s
′)) (315)

35

西北工业大学硕士学位论文

And the Bellman expectation equation for qπ(s, a) is,

Fig. 37 Graphical Bellman action value equation

qπ(s, a) = Rs + γ
∑

Pss′

∑
π(a′|s′)qπ(s′, a′) (316)

In practice, the most used equation is the equation of the action value (316) and the dif
ferent forms of it. It is used to give the new value of the next state.

2) Optimal Value Function

The optimal statevalue function V ∗(s) is the maximum value function over all policies.

v∗(s) = max
π

vπ(s) (317)

It’s the best possible solution for an MDP. Of all kinds of different policies that could
be followed in a Markov chain. The goal is the maximum possible rewards that we can extract
from an MDP.

The optimal actionvalue function q∗(s, a) is the maximum actionvalue function over all
policies.

q∗(s, a) = max
π

qπ(s, a) (318)

For the stateaction pair (s, a), this function gives the expected return for taking action an
in state S, and thereafter following an optimal policy, i.e. the maximum amount of rewards
extracted starting in state S, and taking action a.

If q∗(s, a) is known, then the problem is solved. It tells the right action to take. The optimal
value function specifies the best possible performance in the MDP. An MDP is solved when the
optimal value function is known. For example in Q Learning the optimal value function is found
when the Q table is completed.

36

3 AUTONOMOUS PATH PLANNING

3.3 QLearning

Essentially, Qlearning lets the agent use the environment’s rewards to learn, over time,
the best action to take in a given state.

Qvalues are initialized to an arbitrary value, and as the agent exposes itself to the envi
ronment and receives different rewards by executing different actions, the Qvalues are updated
using the equation:

Q(s, a) = r(s, a) + γmax
a

Q(s′, a) (319)

The above equation states that the Qvalue yielded from being at state s and performing
action a is the immediate reward r(s, a) plus the highest Qvalue possible from the next state
s’. γ here is the discount factor that controls the contribution of rewards further in the future.

Q(s’, a) again depends on Q(s”, a) which will then have a coefficient of gamma squared.
So, the Qvalue depends on Qvalues of future states as shown here:

Q(s, a)→ γQ(s′, a) + γ2Q(s′′, a)...γnQ(s′′...n, a) (320)

Adjusting the value of gamma will diminish or increase the contribution of future rewards.
Since this is a recursive equation, we can start with making arbitrary assumptions for all

qvalues. With experience, it will converge to the optimal policy. In practical situations, this is
implemented as an update:

Q(s, a)← γQ(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (321)

where alpha is the learning rate or step size. This determines to what extent newly acquired
information overrides old information.

3.4 Deep Q learning

Deep Q Learning is used for continuous environments compare to Q Learning which is
used for discrete and rather small environments.

3.4.1 Feedforward neural networks

One of the key features of deep learning is that the computational models, called deep
neural networks are composed of multiple processing layers and can learn representations of
data with multiple levels of abstraction. The learning of a deep neural network (DNN) is made
by using the backpropagationmethod to indicate how the internal parameters should be changed.
On the other hand, the prediction of the output is calculated by using the forward propagation

37

西北工业大学硕士学位论文

method: the data is fed to the input layer, the neurons do a linear transformation on the input by
the weights and biases, the activation function transforms the linear function into a nonlinear
function, the information moves from layer to layer, and finally output the result.

Fig. 38 Neural Network

In Figure 38, a generic feedforward Neural Network. The network has three layers, an
input layer with three input units, a hidden layer, and an output layer consisting of two output
units. The number of circles in each layer indicates the dimensions of the corresponding layers.
The circles represent neurons of the network, and arrows represent the connections and data
between the neurons of the network.

The deep neural network is a kind of nonlinear function that usually contains a large number
of parameters. Formally, the feedforward neural network can be expressed as a function

ŷ = fθ(x) (322)

where x is the input vector, θ is the parameter vector of the network, and y is the output
values. The goal of training a deep neural network is to find the optimal parameters by mini
mizing a defined loss function whose gradients concerning the parameters are calculated with
forwarding and backward propagation.

The loss function for our study is the mean squared error of the predictedQV alue and the
target Q∗. This is a regression problem.

Loss =
1

n

n∑

i=1

(QV aluei −Q∗
i)

2 (323)

38

3 AUTONOMOUS PATH PLANNING

3.4.2 Error Backpropagation

Error backpropagation is an efficient technique to evaluate the gradient of an error function
E(w) for a feedforward neural network. It decreases the complexity of a model. The formula
provides is the following one,

δj = h′(aj)
∑

k

wkjδk (324)

This tells us that the value of δ for a particular hidden unit can be obtained by propagating
the δ’s backward from units higher up in the network,

Fig. 39 Illustration of backpropagation

Illustration 39 of the calculation of δj for hidden unit j by backpropagation of the δ’s from
those units k to which unit j sends connections. The blue arrow denotes the direction of informa
tion flow during forwarding propagation, and the red arrows indicate the backward propagation
of error information.

Thus backpropagation procedure can be applied as follow,

1. Apply an input vector xn to the network and forward propagate through the network to
find the activation of all the hidden and output units.

2. Evaluate the δk for all the output units

3. Backpropagate the δ’s to obtain δj for each hidden unit in the network.

4. Evaluate the required derivatives.

3.4.3 Weights and Bias

Weights and biases (commonly referred to as w and b) are the learnable parameters of a
machine learning model. Neurons are the basic units of a neural network. In a DNN, each
neuron in a layer is connected to each neuron in the next layer. When the inputs are transmitted
between neurons, the weights are applied to the inputs along with the bias.

39

西北工业大学硕士学位论文

∑
(weights× input) + bias (325)

Weights control the signal (or the strength of the connection) between two neurons. In
other words, a weight decides how much influence the input will have on the output.
Biases, which are constant, are an additional input into the next layer that will always have the
value of 1. Bias units are not influenced by the previous layer (they do not have any incoming
connections) but they do have outgoing connections with their weights. The bias unit guarantees
that even when all the inputs are zeros there will still be activation in the neuron.

Fig. 310 Weights and Biases

3.4.4 Deep Q Network

In Deep Qlearning, a neural network is used to approximate the Qvalue function. The
state is given as the input and the Qvalue of all possible actions is generated as the output. The
comparison between Qlearning and deep Qlearning is illustrated below:

40

3 AUTONOMOUS PATH PLANNING

Fig. 311 Comparison between Qlearning and deep Qlearning

The steps involved in reinforcement learning using deepQlearning networks are:

• All the experience is stored by the user in memory

• The next action is determined by the maximum output of the Qnetwork

• The loss function here is mean squared error, equation (323). However, the target or
actual value here is not known as we are dealing with a reinforcement learning problem.
Going back to the Qvalue update equation derived from the Bellman equation (321),
Rt+1 + γmax

a
Q(St+1, a) represents the target. Since R is the unbiased true reward, the

network is going to update its gradient using backpropagation to finally converge.

3.4.5 Target Network

Since the same network is calculating the predicted value and the target value, there could
be a lot of divergence between these two. So, instead of using one neural network for learning,
two could be used as in the work made in [75, 76].

A separate network to estimate the target could also be used. This target network has
the same architecture as the function approximator but with frozen parameters. For every C
iterations (a hyperparameter), the parameters from the prediction network are copied to the
target network. This leads to more stable training because it keeps the target function fixed (for
a while):

41

西北工业大学硕士学位论文

Fig. 312 Target network

3.5 Hyperparameters

The three most important hyperparameters for your agent are as follows:

• α: The learning rate

• γ: The discount rate

• ϵ: The exploration rate

3.5.1 Alpha –deterministic versus stochastic environments

The agent’s learning rate alpha ranges from zero to one. Setting the learning rate to zero
will cause the agent to learn nothing. All of its exploration of its environment and the rewards
it receives will not affect its behavior at all, and it will continue to behave completely randomly.

Setting the learning rate to one will cause the agent to learn policies that are fully specific to
a deterministic environment. One important distinction to understand is between deterministic
and stochastic environments and policies. Briefly, in a deterministic environment, the output is
determined by the initial conditions and there is no randomness involved. The same action is
always taken from the same state in a deterministic environment.

In a stochastic environment, there is randomness involved and the decisions that are made
are given as probability distributions. In other words, a different action is taken from one state
to the other.

42

3 AUTONOMOUS PATH PLANNING

3.5.2 Gamma –current versus future rewards

The agent’s discount rate gamma has a value between zero and one, and its function is to
discount future rewards against immediate rewards.

The agent is deciding what action to take based not only on the reward it expects to get for
taking that action but on the future rewards it might be able to get from the state it will be in
after taking that action.

When a future reward is discounted, it is less valuable than an immediate reward (similar
to how we take into account the time value of money when making a loan and treat a dollar
received today is more valuable than a dollar received a year from now).

The value of gamma chosen varies according to how highly a future reward is valued:

• If a value of zero is chosen for gamma, the agent will not care about future rewards at all
and will only take current rewards into account

• Choosing a value of one for gamma will make the agent consider future rewards as high
as current rewards

3.5.3 Epsilon –exploration versus exploitation

The agent’s exploration rate epsilon also ranges from zero to one. As the agent explores
its environment, it learns that some actions are better to take than others, but what about states
and actions that it hasn’t seen yet? We don’t want it to get stuck on a local maximum, taking
the same currently highestvalued actions over and over when there might be better actions it
hasn’t tried to take yet.

When the epsilon value is set, there will be a probability equal to epsilon that the agent
will take a random (exploratory) action, and a probability equal to 1epsilon that it will take the
current highest Qvalued action for its current state. The value that is chosen for epsilon affects
the rate at which the Qtable converges and the agent discovers the optimal solution. As the
agent gets more and more familiar with its environment, it is expected to start sticking to the
highvalued actions it’s already discovered and do less exploration of the states it hasn’t seen.
It is achieved by having epsilon decay over time as the agent learns more about its environment
and the Qtable converges on its final optimal values.

There are many different ways to decay epsilon, either by using a constant decay factor or
basing the decay factor on some other internal variable. In the experiments, a constant decat
factor will be applied to epsilon.

43

西北工业大学硕士学位论文

3.6 Reinforcement Learning Process

In a way, Reinforcement Learning is the science of making optimal decisions using expe
riences. Breaking it down, the process of Reinforcement Learning involves these simple steps:

• Observation of the environment

• Deciding how to act using some strategy

• Acting accordingly

• Receiving a reward or penalty

• Learning from the experiences and refining our strategy

• Iterate until an optimal strategy is found

Different aspects need to be considered here while modeling an RL solution to this prob
lem: rewards, states, and actions.

3.6.1 Rewards

Since the agent (the 6 DOF Robotic arm, the UR10) is rewardmotivated and is going to
learn how to control the arm by trial experiences in the environment, we need to decide the
rewards and/or penalties and their magnitude accordingly. Here a few points to consider:

• The agent should receive a high positive reward for a successful reaching because this
behavior is highly desired

• The agent should be penalized if it goes too far from the target

• The agent should get a slight negative reward for not making it to the destination after
every timestep. ”Slight” negative because wewould prefer our agent to reach late instead
of making wrong moves trying to reach to the destination as fast as possible

3.6.2 State Space

In RL, the agent encounters a state and then takes action according to the state it’s in. The
State Space is the set of all possible situations the UR10 could inhabit. The state should contain
useful information the agent needs to make the right action. The statespace would be composed
of the positions of the end effector for all the combinations of the joint’s angles.

3.6.3 Action Space

The action space is the set of all the actions that the agent can take in a given state. It’s all
the possible joints angles that the UR10 can make.

44

3 AUTONOMOUS PATH PLANNING

3.7 Integration of RL for path planning

3.7.1 RLrelated algorithms

Q learning directly uses maximum estimated action value max
Q

Q(St+1, At+1) at time step
t+1 to update its action value. It also pays attention to the maximum estimated action value of
the next step and selects optimal actions eventually. The same algorithm as presented below
has been used for different studies for motion planning [7779].

Algorithm 1 QLearning algorithm
Initialize α, ϵ, γ;
Initialize Q(s, a) arbitrarily;
while s not terminal do
for each episode do
Initialize s;
for each step of episode do
if ϵ < Random Uniform (0,1) then
Choose random a

else
Max a in the QTable for s

end if
Take action a, observe r, s’;
Q(s, a)←Q(s, a) + [r +max′

aQ(s′, a′)−Q(s, a)];
s←s′;

end for
Update α, ϵ, γ;

end for
end while

DQN became a research focus when it was invented by Google DeepMind [80, 81]. It is a
combination of Qleaning and neural networks. DQN uses NN to approximate Qvalues by its
weight θ. The principle of the DQN algorithms is exposed in the following algorithm.

45

西北工业大学硕士学位论文

Algorithm 2 DeepQLearning algorithm
Initialize actionvalue Network with random weights;
Initialize α, ϵ, γ;
while s not terminal do
for each episode do
Initialize sequence s1 = {x1} and preprocessed sequenced φ1 = φ(s1);
for each step of episode do
if ϵ < Random Uniform (0,1) then
Choose random a

else
Predict max

a
Q∗(φ(st, a; θ) with the Network

end if
Take action a, observe r, s’;
Q(s, a)←Q(s, a) + [r +max′

aQ(s′, a′)−Q(s, a)];
s←s′;

end for
Update α, ϵ, γ;
Save θ;

end for
end while

3.7.2 RL applied to the study

With RL, motion planning is realized by attaching destination and safe paths with big re
ward (numerical value), while obstacles are attached with penalties (negative reward). An opti
mal path is found according to total rewards from the initial place to the destination. The UR is
first discovering the environment. To have this discovering behavior, the hyperparameters are
set to the lowest for epsilon (exploration) and gamma (current reward). That way the robot is
mapping the workspace and start to ”learn” how its joints work.

The robot is guided only with the rewards which increase for a closer position to the tar
get. The hyperparameters are updated at each episode. The epsilon and gamma increase which
induces more specific tasks. After a few episodes, the exploration is no more required and the
goal reward is more considered than the current rewards. To maximize the reward, updated
with the Bellman equation and so the hyperparameters, the robot has to find an optimal path.
The UR is then finding a sequence of joints to get to the goal and have the final reward. The
learning rate, alpha, is set to 0.5 to have a good balance between stochastic and deterministic
environments.

46

3 AUTONOMOUS PATH PLANNING

Noise in DQN leads to bias and false selection of next action a′ follows, therefore leading to
overestimation of next action valueQ(s′, a′, θ′). To reduce the overestimation caused by noise,
the DQN algorithm uses a double network such as the target network explained previously. The
DQN algorithm used for the study is a combination of two different techniques: Experience
Replay to avoid overfitting and a target network.

3.8 Summary

In this chapter, the kinematic of the robotic has been seen. This part is necessary for the
URDF to simulate the robot arm. The inverse and forward kinematic has also been explained
for the UR10. Then the RL theory was drawn up with mathematical tools such as MDP and the
Bellman equation. Finally, QLearning and DQL which are the two Policies used in this study
were explained. The concept of Neural Networks was also detailed.

47

西北工业大学硕士学位论文

4 Simulation and experiment

This chapter will present the process that leads to the final simulation and the experiments.
The software to use for the simulation has to carefully choose, it has to be convenient to use
and powerful enough to obtain results for the experiments. In this chapter, we will compare two
policies the QLearning which the most basic policy in RL, and the DQL which uses a Neural
Network instead of a Qtable. The results produced by the simulation of these two policies will
be confronted to find the optimal one for path planning.

4.1 Choosing the environment

4.1.1 ROS and SmartGrasping Sandbox

Robot Operating System (ROS) is an opensource robotics middleware suite. Although
ROS is not an operating system but a collection of software frameworks for robot software
development, it provides services designed for a heterogeneous computer cluster such as hard
ware abstraction, lowlevel device control, implementation of commonlyused functionality,
messagepassing between processes, and package management. Running sets of ROSbased
processes are represented in a graph architecture where processing takes place in nodes that
may receive, post, and multiplex sensor data, control, state, planning, actuator, and other mes
sages.

ROSworks with topics, nodes, and publisher to communicate with the sensors and robots.
That’s naturally that this study first attempted the use of this common robotic tool. A first sim
ulation was made using in part the work made by [82]. This simulation aimed to catch a ball
using the shadow hand developed by the shadow robot company. In Figure 41 the simulation is
presented, on the left side, the gazebo simulator allows to have a graphical return of the actions.

Fig. 41 Shadow hand with ROS + Gazebo

48

4 SIMULATION AND EXPERIMENT

The first issue that this configuration leads to is the lack of flexibility. There is no possi
bility to speed up the training by disconnecting the Gazebo simulation, the code needs the right
version of Gazebo, ROS, Python, and Linux without what it can’t be exploited by someone else.
Then the environment was designed in 2018 so without the newest techniques of reinforcement
learning. Finally, ROS is very powerful and convenient but sometimes too complex for simple
tasks.

4.1.2 Robogym

In the second place, the study turned to use Robogym which was developed by [73].
The team developed Open Ai Gym environments for the use of Mir100 and the UR10. The
environments are developed in a docker container. The communication between the robot and
the environment is made through ServiceManager. This technique is supposed to be more
convenient to use but the project is still not fully stable andmany errors occur during the training.
The connection through ServiceManager was very slow and couldn’t be properly used.

Fig. 42 ”EndEffectorPositioningUR10Simv0” in Reality and in Gazebo

4.1.3 Pybullet

After multiple trials and research on different simulators (Gazebo, Mujoco, Unity...) the
choice has been done to use Pybullet. All the programs, the Open Ai Gym environments, the
agent training programs, the Unify Robot Description File (URDF) were made from scratch
using Pybullet for the simulation and the connections to the robot. That way all the simulations
could be fully handled and modify if needed.

49

西北工业大学硕士学位论文

The main advantage of Pybullet is a DIRECT mode i.e. without Graphical Unit Interface
(GUI) which allows to speed up the training. The interface is rather easy to manipulate and
offers many interesting functions to control the robot. Pybullet is also open source so there is
no license to pay for its use (compare to Mujoco) and is updated with a community. Pybullet
is widely for robotic and RL [8385]. Finally, thank its rather simple interface the training was
faster than with Gazebo for example which need time in every reset to set the ”world”.

The graphical interface is presented on the Figure 43.

Fig. 43 Pybullet GUI

4.1.4 Comparison of the simulation environment

The 3 environments presented are compared in the following tabular.

Tab. 41 Comparison of simulations tools

Techniques GUI Open
Sourced

Possibility to
speed training

General handling

Smart Grasping Sandbox Gazebo Yes No Complicated to get
started

RoboGym Service Manager Yes No Difficult communication
with the robot

Pybullet Yes Yes With DIRECT
mode

Easy to get started

50

4 SIMULATION AND EXPERIMENT

4.2 Simulation

The building of the simulation is made in 3 different parts that communicate together.

Fig. 44 Three different parts of the simulation

4.2.1 State and Action Space

To speed up the training a discrete State Space has been set up. Only the interesting joint
angles were selected for the study and experiments. In their work, [70] used the same way to
proceed by constructing a reasonable environment and state space. A similar technique was
used by [69] where approximate regions instead of accurate measurements are used to define
new state space and joint actions.

Fig. 45 Presentation of the simulated UR

51

西北工业大学硕士学位论文

The possible angles for the 4 joints are as followed:

• Shoulderpanjoint = [1.8 1.56 1.32 1.08 0.84 0.6 0.36 0.12 0.12 0.36 0.6 0.84 1.08
1.32 1.56 1.8]

• Shoulderliftjoint = [0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2 1.3]

• Elbowjoint = [0.8 0.935 1.07 1.205 1.34 1.475 1.61 1.745 1.88 2.015 2.15]

• Wrist1joint = [0.5 1.0 1.5 2.0]

Fig. 46 Workspace map of the UR

These joints were chosen so that the robot could reach almost every part of the table in
front of it as it is presented in Figure 46. As long as the target is 20mm away from the end
effector it can catch it with the magnetized endeffector. The collision of the table is directly
managed in the URDF. With all these possible angles the actions of the UR10 can be considered
in our study as continuous. The state space is then 16 x 10 x 11 x 4 = 7040 states. The action
space is 16 + 10 + 11 + 4 = 41 actions.

4.2.2 Environment

As previously said the environment is where the objects interact to complete a task. Usu
ally, the environment takes the name of the task it is aimed for. For this part, Open Ai Gym was
used. Gym is a toolkit for developing and comparing reinforcement learning algorithms. This

52

4 SIMULATION AND EXPERIMENT

means that it’s the same functions that are developed for every environment [86]. The main
functions are:

• Init(): It’s the first function called that starts the environment.

• Step(): This function is called every time the robot makes an action. In our case Step()
choose a random joint to move in a random position for the training.

• Reset(): It simply reset the environment every time an epoch is finished.

• Observation(): It gives the state in which the robot is. It returns a 4 vector with the angle
of the joints.

1) Task

The final environment that leads to the assembly is the pick and place environment. It is
a composition of two reach environments. That’s why for the comparison of the policies, only
the reach environment will be considered.

2) Reward

Different rewards are given, all of them are based on the distance between the target and
the endeffector. A simple function for the robot is (41) which is updated at each step. A reward
of 10 is given when the object to grasp is reached and then a reward of 20 when the assembly
point is reached. Penalties are given if the arm is going too far.

R(s, a) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

10 if distance < 0.8m

20 if distance < 0.8m for final destination with the object
−1 if distance > 1m

1
distance else

(41)

4.3 QLearning

Once the environment is defined, the policy is then applied to it. That’s where the robot is
learning.

4.3.1 Q table

In Q Learning a Q table is used as the memory. The table is composed of the actions and
states and is updated with the Bellman equation at every step. The table is initialized with zeros.

53

西北工业大学硕士学位论文

Tab. 42 Q table initialized with zeros

After multiple episodes of training the Q table is filled with coefficient through the Bell
man equation.

Tab. 43 Q table after training

When the robot exploits the Q table it looks at the line for a certain state. For example in the
state 3, Shoulderpanjoint = 1.32, Shoulderliftjoint = 0.3, Elbowjoint = 0.8 andWrist1joint
= 0.5 the optimal action according to the Q table is to move the Wrist1Joint to 2.0.

Tab. 44 Exploitation of the Q table

54

4 SIMULATION AND EXPERIMENT

4.3.2 Training the agent

First, we’ll initialize the Qtable to amatrix of zeros. Then the training algorithm is created,
it will update this Qtable as the agent explores the environment over one thousand episodes.

In the first part ofwhile not done, it is decidedwhether to pick a random action or to exploit
the already computed Qvalues. This is done simply by using the epsilon value and comparing
it to the random.uniform(0, 1) function, which returns an arbitrary number between 0 and 1.

The chosen action is executed in the environment to obtain the next_state and the re
ward from performing the action. After that, the maximum Qvalue is calculated for the ac
tions corresponding to the next_state, and with that, the Qvalue can easily be updated to the
new_q_value. It is the same principle as the Algorithm 1 in Section 3.7.

One epoch is completed once the endeffector reaches the target with a minimum distance
of 20mm. This distance is a reasonable distance from magnetization. It has been tested up to
50mm with the neodymium magnets presented in Chapter 2 Figure 215. The hyperparameters
are updated at each episode, especially ϵ which is decreasing during the learning.

4.3.3 Evaluating the agent

After one thousand episodes the end effector can reach the target with around 25 actions
(Epochs). The training took around 2 hours to be completed. 1000 Episodes is the number of
episodes required to make the robot learn.

Fig. 47 Training after 1000 Episodes

55

西北工业大学硕士学位论文

In a second algorithm, the efficiency of this training was tested for 100 Episodes during
which the robot was only exploiting the Q Table. It has been compared to an untrained robot.

(a) Untrained robot (b) Trained robot

Fig. 48 Comparison after training

One step represents a modification of the angle of the robot. This is what gives us feedback
on how good the robot is to find the optimal path. For the untrained robot 32.34 steps were
required to reach the target against 22.52 steps for the trained robot. So after training the robot
learned to reduce the number of steps on average from 10 steps. This is not significant. This
could be explained by the fact that the QLearning is not adapted to continuous work such as
this reach task.

4.4 Deep Q Learning

In Deep Q Learning, a Neural Network is used to approximate the Qvalue function using
Keras [87] which is a library of TensorF low [88]. Tensorflow is a widely used tool for
Machine Learning.

4.4.1 Define Network

Neural networks are defined inKeras as a sequence of layers. The container for these lay
ers is the Sequential class. The first step is to create an instance of the Sequential class. Then
the layers are created and added in the order that they should be connected. The first layer in the
network must define the number of inputs to expect. The way that this is specified can differ
depending on the network type, but for a Multilayer Perception model, this is specified by the
input_dim attribute. In the case of the study the first layer is of the size of the state_size which

56

4 SIMULATION AND EXPERIMENT

is the number of possible moves for the robot, so 4.

A Sequential model could be seen as a pipeline with the raw data fed in at the bottom
and predictions that come out at the top. This is a helpful conception in Keras as concerns
that were traditionally associated with a layer can also be split out and added as separate layers,
clearly showing their role in the transform of data from input to prediction. For example, acti
vation functions that transform a summed signal from each neuron in a layer can be extracted
and added to the Sequential as a layerlike object called Activation.

The choice of activation function is most important for the output layer as it will define the
format that predictions will take. An activation function is a node, added the output of a layer
or between two layers. Literature also calls it neuron or unit. It allows the output of the neural
network to have resulting values between 0 to 1 or 1 to 1. Some of them are more popular such
as logistic sigmoid, tanh, and ReLU . Activation function takes though a number to perform a
mathematical operation associated with.

(1) Logistic Sigmoid or Sigmoid uses a real value x input to arrange it into the range [0,1],

σ(x) =
1

1 + exp−x (42)

(2) Hyperbolic Tangent or tanh uses a real value x input to arrange it into the range [1,1],

tanh(x) = 2σ(2x)− 1 (43)

(3) Rectified Linear Unit or ReLU uses a real value input and threshold negative values at
zero,

f(x) = max(0, x) (44)

Following graphs 49 show each activation function,

Fig. 49 Three different activation functions

57

西北工业大学硕士学位论文

Thus, for linear regression we use the sum of square error; for binary classification, we use
logistic sigmoid and crossentropy; for multiclass classification, we use softmax and cross
entropy; and for NN ReLU is traditionally more used.

For the study, the regression activation has been chosen because the number of neurons
matches the number of outputs which is the number of actions (41). So that each action weights
each input state.

4.4.2 Compile Network

Once we have defined the network with Sequential and choose the activation function
(ReLu) we head up to compilation which is an efficiency step. It transforms the simple se
quence of layers that we defined into a highly efficient series of matrix transforms in a format
intended to be executed on the Graphical Process Unit (GPU).

The compilation is always required after defining a model. This includes both before train
ing it using an optimization scheme as well as loading a set of pretrained weights from a save
file. The reason is that the compilation step prepares an efficient representation of the network
that is also required to make predictions on the hardware.

Compilation requires several parameters to be specified, specifically tailored to training
the network. Specifically, the optimization algorithm to use to train the network and the loss
function used to evaluate the network is minimized by the optimization algorithm.

The type of predictive modeling problem imposes constraints on the type of loss function
that can be used. For example, below are some standard loss functions for different predictive
model types:

• Regression: Mean Squared Error or ”mse”.

• BinaryClassification (2 class): Logarithmic Loss, also called cross entropy or ”binary_crossentropy”.

• Multiclass Classification (>2 class): Multiclass Logarithmic Loss or ”categorical_crossentropy”.

The most commonly used predictive model is the mean square error which is the one also
used for our DeepQNetwork.

4.4.3 Fit Network

Once the network is compiled, it can be fit, which means adapting the weights on a training
dataset. Fitting the network requires the training data to be specified, both a matrix of input

58

4 SIMULATION AND EXPERIMENT

patterns X and an array of matching output patterns y. So the data were reshaped to get the
input in form of a matrix (state_size, 1),

St =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

s1

s2

s3
...
sk

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(45)

and the output (action_size, 1),

Q(st) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

Q(st, a1)

Q(st, a2)

Q(st, a3)
...

Q(st, an)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(46)

We denoteQ(st) a vector of all actionvalues in the state st, and useQ(st, at) to specify the
Qvalue of taking at in st. The action value iteration is realized by updating the neural network
by the means of its weights.

The network is trained using the backpropagation algorithm and optimized according to
the optimization algorithm and loss function specified when compiling the model. The opti
mizer choose is Adam. Adam optimization is a stochastic gradient descent method that is based
on adaptive estimation of firstorder and secondorder moments. As for the loss function the
mean square error was used. The backpropagation algorithm requires that the network be trained
for a specified number of epochs or exposures to the training dataset.

Each epoch can be partitioned into groups of inputoutput pattern pairs called batches. This
defines the number of patterns that the network is exposed to before the weights are updated
within an epoch. It is also an efficiency optimization, ensuring that not too many input patterns
are loaded into memory at a time.

4.4.4 Evaluate Network

The network can be evaluated on the training data, but this will not provide a useful indi
cation of the performance of the network as a predictive model, as it has seen all of this data
before. The performance of the network can be evaluated on a separate datasheet, unseen during
testing. This will provide an estimate of the performance of the network at making predictions
for unseen data in the future.

59

西北工业大学硕士学位论文

The model evaluates the loss across all of the test patterns, as well as any other metrics
specified when the model was compiled, like accuracy. A list of evaluation metrics is returned.
The evaluation of the network is detailed later in the section ”evaluating the agent”.

4.4.5 Overfitting

Overfitting is ”the production of an analysis that corresponds too closely or exactly to a
particular set of data, and may therefore fail to fit additional data or predict future observations
reliably”. An overfitted model is a statistical model that contains more parameters than can be
justified by the data.

It is a model that has learned too much how to do a specific task. The robot won’t be able
to learn from new inputs. Graphically it is observed when the accuracy is getting a fluctuation
in its variations compared to the training.

Fig. 410 Overfitting

4.4.6 Make Predictions

Finally, once we are satisfied with the performance of our fit model, we can use it to make
predictions on new data. This is made by calling the predict() function on the model with an
array of new input patterns. The predictions will be returned in the format provided by the
output layer of the network. In the case of a regression problem, these predictions will be in the
format of the problem directly, provided by a linear activation function.

4.4.7 Experience Replay

The DQN is easily overfitted over current episodes [89, 90]. Once DQN is overfitted, it’
s hard to produce various experiences. To solve this problem, Experience Replay stores expe

60

4 SIMULATION AND EXPERIMENT

riences including state transitions, rewards, and actions, which are necessary data to perform Q
learning, and makes minibatches to update neural networks. This technique expects the fol
lowing merits.

• reduces the correlation between experiences in updating DQN

• increases learning speed with minibatches

• reuses past transitions to avoid catastrophic forgetting

Algorithm 3 Experience Replay with target network
Initialize the Batch with random selection in the experiences;
for a, r, s, s’ in the Batch do
if done then
Target = reward

else
Target← r + γ × (max

a
Q∗(φ(st+1, a; θ))

end if
Target_f = predict(state);
Target_f[0][action] = target;
Evaluate the Network;

end for

Experience replay is a rather new technique that provides very good results combined with
a target network has it can be seen in the following sections where the agent is evaluated. Over
fitting has been avoided through this technique.

4.4.8 Training the agent

The process to train the agent is almost the same as for the Q Learning the first actions
taken are random and the rewards are given according to the distance to the target. Now the
agent has a memory in which it can store the state, action, reward, nextstate, and done. And
after a while, the actions taken are predicted with the Neural Network. In this program, hyper
parameter are updated at each episode.

A minibatch is created, the size of this batch is set to 256, it has been determined through
experiences that it’s the best size to obtain good results and minimize the time of learning. The
experience replay is working on that minibatch so if it’s too small it won’t have enough data to
give results but if it’s too large the calculations take too long.

61

西北工业大学硕士学位论文

Also after experiences, it has been understood that the training of the agent had to be done
on at least 8 times the minibatch size so that there are enough random values of the batch for
the replay. The weights are saved in amodel.h5 file so that they could be reused later.

Algorithm 4 Deep Q Learning with Experience Replay
Initialize the Network with state_size and action_size;
Initialize the Memory D;
Initialize α, ϵ, γ;
for each episode do
Initialize the environment;
Initialize sequence s1 = {x1} and preprocessed sequenced φ1 = φ(s1);
Reshape the states;
for each epochs do
while not done do
if Ramdom value in (0, 1) < epsilon then
Choose Random a

else
Predict max

a
Q∗(φ(st, a; θ) with the Network

end if
Take action a;

end while
if Done then
Reward = Reward

else
Reward = 1

end if
Store a, r, s, s’, done in D;
s← s′

if D > 8 × Batch_size then
Experience Replay;

end if
Update α, ϵ, γ;
Save θ;

end for
end for

62

4 SIMULATION AND EXPERIMENT

4.4.9 Evaluating the agent

For DQL another parameter is to take into account compared to QLearning. The network
accuracy needs to be followed to avoid overfitting.

(a) Learning evolution (b) Network evolution

Fig. 411 Evaluation of the agent for reach

On graph (a) we can see the number of steps decreasing Episodes after Episodes. The
training could have been stopped at 100 Episodes but the last 100 Episodes allow to obtain a
more stable model. Graph (b) ensures to not have overfitting. The curve is starting after around
15 Episodes because before that the Experience Replay wasn’t involved. So there is only an
increasing accuracy, nonfluctuation so no overfitting. The training duration was about 30 min
utes for 200 Episodes.

The distribution of the end effector is shown in the following figures. We can see the
evolution of the position of the robot to reach the target in red. In Episode 1 the robot is exploring
the environment and then it starts to focus on where the reward is the best for him to finally find
the optimal path to the target at Episode 200.

63

西北工业大学硕士学位论文

(a) Tip pose episode=0 (b) Tip pose episode=100

(c) Tip pose episode=200

Fig. 412 Tip pose

Let’s now compare to an untrained robot during 100 Episodes same as it has been made
for the QLearning to observe the efficiency of the training.

(a) Untrained robot (b) Trained robot

Fig. 413 Comparison after training

64

4 SIMULATION AND EXPERIMENT

If we remove the pic at around 50 steps, the average number of steps is around 3 steps.
Compare to more than 30 Steps for an untrained robot the conclusion is that the robot is very
efficient after training. 3 steps it is the minimum expected for the robot to reach the target for
its starting position to the target. This optimal path can be verified with the GPU. As presented
in the following figures, the robot needs 3 steps that represent the optimal path.

(a) Starting position (b) Step 1, Shoulderpanjoint to 1.08

(c) Target Reached, Elbowjoint to 1.07

Fig. 414 Steps to reach the target

65

西北工业大学硕士学位论文

4.5 Comparison of the Policies

Q Learning was the first policy treated because it’s the easiest to manipulate. It gives the
first view of Reinforcement Learning. The results provided by this technique stay rather low in
terms of efficiency with only a difference of 10 steps compare to the untrained robot. But it has
been interesting to realize through the experience that it is not adapted to the problem.

The second technique which is Deep Q Learning has reused the same concept but added
to that Neural Network. The experiences showed that it was more adapted to the robotic task.
The number of steps was reduced to the minimum (3 steps) after training. The robot found the
optimal path to reach the target. This Policy will be used in the next section to realize the final
assembly.

Tab. 45 Comparison of the Policies

Q Learning Deep Q Learning

Number of episodes for results 1000 100
Training time 2 hours 30 minutes
Steps to reach the target 22 3
Adapted to the problem No Yes

4.6 Pick and Place

4.6.1 Environment

The environment describes here is the pick and placewhich is necessary for the assembly.
As seen in the last section the DQL is more suitable for this task. So the robot is trained to
first reach an assembly element (a red ball) and then place it in a desirable location. Again a
minimum distance is set to obtain the magnetization between the end effector and the assembly
element. After the first element is ”fixed” to the tip, it will be unmagnetized once it has reached
the final location for the assembly. Then the UR will pick another element and so on to get the
desired assembly.

66

4 SIMULATION AND EXPERIMENT

(a) Reaching the element and grasping with
magnetization (b) Moving the element to the final position

(c) Placing the element to the final postion

Fig. 415 Steps to pick and place

4.6.2 Training the agent and Evaluating the Network

The training took about 5 hours and it required around 500 steps. The accuracy doesn’t
present any fluctuation so there is no overfitting. However, we can see that the accuracy is al
most stabilizing at around 200 Episodes. The training could have been stopped at 200 Episodes
but again for a more stable network, the training was continued until 500 Episodes. The min
imum number of steps has been also meeting with an average of 5 steps to pick and place the
object. The accuracy of the position is still set at 0.8m so the robot can place the ball with an ac
curacy of 0.8m. A more accurate model with more positions and longer training could provide
a better positioning but the material used for the study is not able to increase the accuracy. The
behavior of the robot already meets the requirements for this task by finding the optimal path.

67

西北工业大学硕士学位论文

(a) Learning evolution (b) Network evolution

Fig. 416 Evaluation of the agent for pick and place

A training oriented to replicate the form of hexagon has also been conducted. Themagnetic
balls and pick and place one by one to get a hexagon. The bars couldn’t be added because the
orientation has to be taken into account and the material used for the study is not powerful
enough for such a task.

68

4 SIMULATION AND EXPERIMENT

(a) Start (b) Reach

(c) Move (d) Place

(e) Reach (f) Place

(g) Final Assembly

Fig. 417 Assembly of hexagons with the magnetic balls
69

西北工业大学硕士学位论文

4.7 Summary

First, the software Pybullet has been chosen among other environments for its convenience
for the experiments. Then the process of creating a RL algorithmwas detailed. In third place, the
QLearning policy was used for experiments. The results obtained with this policy for reaching
a target were not conclusive. The number of steps is the number of modifications of the joint
angle. This is what gave the efficiency of the robot. It could only reduce the number of steps
by 10 compared to an untrained robot. Then the DQL showed better results. With this Policy,
the robot could find the optimal path to the target with the minimum number of 3 steps. Finally,
that technique was kept to make the Pick and P lace environment where the robot had to catch
a ball with a magnetized end effector and place it in another desired position. In the end, the
robot did it with an average of 5 steps.

70

5 CONCLUSION

5 Conclusion

5.1 Thesis Summary

This study aimed to find new techniques for robotic assembly in space. First a design of
bars that allows easier construction of truss structure has been presented. This design could also
reduce the payload for large structures such as telescopes. One of the key techniques is the use
of magnets. Magnetized balls were used as joints between the elements and magnets integrated
on the sides of the bars and the back of the mirror again ease the assembly.

Afterward, the forward and inverse kinematic were presented for a better understanding of
the operation of the UR10. Then the autonomous path planning using reinforcement has been
explained. Reinforcement Learning is a rather complex technique but allows to have optimal
results for path planning. Two policies were detailed, Q Learning and DeepQLearning. This
second policy uses Neural Network to find the best action and is more adapted to a continuous
environment such as robotic.

Finally, the simulation and experiments were detailed. The simulation was first made using
QLearning but the results were not conclusive. Then the DeepQLearning has been used to
solve the problem of path planning. The experiments with this policy showed that RL with
Neural Network is well adapted to path planning because the robot was able to reach the target
with the optimal path after training. The robot was able in the end to pick with a magnetize end
effector and place elements for a future assembly.

5.2 Discussion and Future Works

This study has shown how efficient could be the use of reinforcement learning for path
planning. However, the assembly has not been fully made. Taking into consideration the rota
tion of the wrist and the orientation of the bars would require a very powerful computer. The
training could take more than 3 days if the computer is not adapted. So the future work would
be to have a fully assembled structure using the technique of machine learning with the magne
tized end effector. Also, more policies could be compared as this field of study is rather new,
more and more techniques are arising every year.

An important future work would also be to test the program on the real robot. Also, a
camera could be used to detect the object in the space to have again amore adaptablemanipulator
for the assembly.

71

西北工业大学硕士学位论文

Bibliography

[1] D. Akin, S. Brook. A survey of serviceable spacecraft failures[C] AIAA Space 2001
Conference and Exposition. Albuquerque, USA: AIAA, 2001: 18.

[2] J. Dorsey, W. Judith. Space Assembly of Large Structural System Architectures[C]
AIAA SPACE 2016. Long Beach, California, USA: AIAA, 2016: 111.

[3] S. Mohan. Operational Impact of Mass Property Update for On Orbit Assembly[C]
SpaceOps 2006 Conference. Rome: AIAA, 2006: 18.

[4] P. Williams, J. Dempsey, D. Hamill, et al. Space Science and Technology Partnership
Forum: Value Proposition, Strategic Framework, and Capability Needs for InSpace As
sembly[C] 2018 AIAA SPACE and Astronautics Forum and Exposition. Orlando, FL,
USA: AIAA, 2018.

[5] D. Piskorz, K. Jones. Onorbit assembly of space assets: A path to affordable and adapt
able space infrastructure[J]. The Aerospace Corporation 2018, 2018.

[6] W. Whittake. Robotics For Assembly, Inspection, And Maintenance Of Space Macrofa
cilities[C] AIAA Space 2000 Conference and Exposition. USA: AIAA, 2000.

[7] D. Barnhart, P.Wills, B. S. et al. Creating a sustainable assembly architecture for nextgen
space: The Phoenix effect.[C] 30th Space Symposiumn. Colorado Springs: DARPA,
2014.

[8] I. D. Boyd, D. P. Reina S. Buenconsejo, B. Lal, et al. OnOrbitManufacturing andAssem
bly of Spacecraft[J]. IDA SCIENCE & TECHNOLOGY POLICY INSTITUTE, 2017.

[9] M.D. Lallo. Experiencewith theHubble Space Telescope: TwentyYears of anArchetype[J].
Opt. Eng. 51, 011011, 2011.

[10] G. H. Kitmacher. Reference Guide to the international Space Station[M]. NASA, Wash
ington DC: NASA, 2010.

[11] M. LopezMorales, K. France, F. Ferraro, et al. Another Servicing Mission to Extend
Hubble Space Telescope’s Science past the Next Decade[J]. ArXiv: Instrumentation and
Methods for Astrophysics, 2019.

[12] J. Coleshill, L. Oshinowo, R. Rembala, et al. Dextre: Improving maintenance operations
on the International Space Station[J]. Acta Astronautica, 2009, 64: 869874.

[13] M. Hiltz, C. Rice, K. Boyle, et al. Canadarm: 20 years of mission success through adap
tation[J]. Canadian Space Agency, 2020.

72

BIBLIOGRAPHY

[14] J. Watson, T. Collins, H. Bush. A history of astronaut construction of large space struc
tures at NASA Langley Research Center[C] 2002 IEEE Aerospace Conference: vol. 7.
Big Sky, MT, USA: IEEE, 2002: 77.

[15] M. Rognant, C. Cumer, J. Biannic, et al. Autonomous assembly of large structures in
space: a technology review[C] 8THEuropeanConference forAeronautics andAerospace
Sciences (EUCASS). Madrid, SPAIN: EUCASS, 2019.

[16] J. Garibotti, A. Cwiertny, R. Johnson. On orbit fabrication and assembly of large space
structural subsystems[J]. Acta Astronautica, 1980, 7(7): 847865.

[17] W. L. Heard, H. G. Bush, R. E. Wallsom, et al. A mobile work station concept for me
chanically aided astronaut assembly of large space trusses[M]. Langley Technical Report
Server, USA: NASA, 1983.

[18] B. Jenett, C. Gregg, D. Cellucci, et al. Design of multifunctional hierarchical space struc
tures[C] 2017 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2017: 110.

[19] P. Pressel. Generic telescope truss[C] Analysis of Optical Structures: vol. 1991. Inter
national Society for Optics: SPIE, 2015: 5056.

[20] M. Mikulas, R. Pappa, J. Warren, et al. Telescoping Solar Array Concept for Achieving
High Packaging Efficiency[C] 2nd AIAA Spacecraft Structures Conference. Kissim
mee, Florida: AIAA, 2015.

[21] M. Rhodes, R.Will, M. A.Wise. A Telerobotic System for Automated Assembly of Large
Space Structures[M]. Administration N.A.S., USA: CreateSpace Independent Publishing
Platform, 2018.

[22] Z. Xue, J. Liu, C.Wu, et al. Review of inspace assembly technologies[J]. Chinese Journal
of Aeronautics, 2020.

[23] J. P. Gardner, J. C. Mather, M. Clampin, et al. The James Webb Space Telescope[J].
Space Science Reviews, 2006, 123: 485606.

[24] W. R. Doggett. Modular Assembly: An Efficient Approach for Creation andMaintenance
of Persistent Space Assets[C] 2019 IEEE International Conference on Robotics and
Automation. Hampton, Va. 23681 USA: Mechanics, 2019.

[25] E. L. Gralla. Strategies for launch and assembly of modular spacecraft[D]. 2006.

[26] S. Mohan, D. Miller, J. Budinoff. Assembly of a large modular optical telescope (AL
MOST)[J]. SPIE, 2008.

[27] W. R. Doggett, J. Dorsey. State of the Profession Considerations: NASA Langley Re
search Center Capabilities and Technologies for Large Space Structures, InSpace As
sembly and Modular Persistent Assets[J]. Bulletin of the AAS, 2019, 51(7).

73

西北工业大学硕士学位论文

[28] E. Medzmariashvili, N. Tsignadze, Z. Gviniashvili, et al. Ideology for Creation the Large
Size SpaceReflectoryAutonomousComplex[C] 37th ESA (The European SpaceAgency)
Antenna Workshop. Noordwijk, Netherland: ESTEC, 2016: 19.

[29] W. R. Doggett. Robotic assembly of truss structures for space systems and future research
plans[C] Proceedings, IEEE Aerospace Conference: vol. 7. Big Sky, MT, USA: IEEE,
2002: 77.

[30] Y. Bai, X. Yang. Novel Joint for Assembly of AllComposite Space Truss Structures:
Conceptual Design and Preliminary Study[J]. Journal of Composites for Construction,
2013, 17.

[31] M. A. Roa, K. Nottensteiner, A.Wedler, et al. Robotic Technologies for InSpace Assem
bly Operations[C] Advanced Space Technologies in Robotics and Automation (AS
TRA). Leiden, The Netherlands: ASTRA, 2017.

[32] K. Nottensteiner, T. Bodenmueller, M. Kassecker, et al. A Complete Automated Chain
for Flexible Assembly using Recognition, Planning and SensorBased Execution[C]
Proceedings of ISR 2016: 47st International Symposium on Robotics. Munich, Germany:
VDE, 2016: 18.

[33] K. Albee. Toward optimal motion planning for dynamic robots : applications onorbit[D].
2019.

[34] M. Diftler, W. Doggett, J. Mehling, et al. Reconfiguration of EVA Modular Truss As
semblies using an Anthropomorphic Robot[J]. AIP Conference Proceedings, 2006, 813:
992999.

[35] S I. Nishida, H. Hirabayashi, T. Yoshikawa. A New Space Robot EndEffector for On
Orbit Reflector Assembly[C] 2006 9th International Conference on Control, Automa
tion, Robotics and Vision. Singapore: IEEE, 2006: 16.

[36] W. Bluethmann, R. Ambrose, M. Diftler, et al. Robonaut: A Robot Designed to Work
with Humans in Space[J]. Autonomous robots, 2003, 14: 179197.

[37] M. Diftler, J. Mehling, M. Abdallah, et al. Robonaut 2 The first humanoid robot in
space[C] IEEE International Conference onRobotics andAutomation. Shanghai, China:
IEEE, 2011: 21782183.

[38] B. A. Corbin, A. Abdurrezak, L. P. Newell Gordon, et al. Global Trends in On Orbit Ser
vicing, Assembly and Manufacturing (OSAM)[J]. IDA SCIENCE & TECHNOLOGY
POLICY INSTITUTE, 2020.

[39] S. Patané, E. Joyce, M. Snyder, et al. Archinaut: InSpace Manufacturing and Assembly
for NextGeneration Space Habitats[C] AIAASPACE andAstronautics Forum and Ex
position. Orlando, FL: AIAA, 2017.

74

BIBLIOGRAPHY

[40] C. Koch, M. Jankovic, S. Natarajan, et al. Underwater Demonstrator for Autonomous
InOrbit Assembly of Large Structures[C] 15th International Symposium on Artificial
Intelligence, Robotics and Automation in Space (iSAIRAS) 2020. Online: SAIRAS,
2020.

[41] M. Mori, H. Kagawa, Y. Saito. Summary of studies on space solar power systems of
Japan Aerospace Exploration Agency (JAXA)[J]. Acta Astronautica, 2006, 59: 132138.

[42] R. Will, M. Rhodes, W. R. Doggett, et al. An Automated Assembly System for Large
Space Structures[M] A. A. Desrochers. Intelligent Robotic Systems for Space Explo
ration. Boston, MA: Springer US, 1992: 39110.

[43] W. Doggett. Robotic assembly of truss structures for space systems and future research
plans[C] IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2002: 73589.

[44] R.Hoyt, J. Cushing, J. Slostad. SpiderFab: Process for OnOrbit Construction ofKilometer
Scale Apertures[J]., 8 July 2013.

[45] D. L. Chandler. Assembler robots make large structures from little pieces[J]. MIT News,
2019.

[46] Y. Dai, Z. Liu, Y. Qi, et al. Spatial cellular robot in orbital truss collisionfree path plan
ning[J]. Mechanical Sciences, 2020, 11: 233250.

[47] B. Doerr, R. Linares. Motion Planning and Control for OnOrbit Assembly using LQR
RRT* and Nonlinear MPC.[J]. ArXiv: Robotics, 2020.

[48] C. Zhou, B. Huang, P. Fränti. A review of motion planning algorithms for intelligent
robotics[J]. ArXiv: Robotics, 2021.

[49] A. Javaid. Understanding Dijkstra Algorithm[J]. SSRN Electronic Journal, 2013.

[50] L. Jaillet, J. Cortes, T. Simeon. Transitionbased RRT for path planning in continuous cost
spaces[C] 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.
Nice, France: IEEE, 2008: 21452150.

[51] S. Lavalle, J. Kuffner. RapidlyExploring Random Trees: Progress and Prospects[J]. Al
gorithmic and computational robotics: New directions, 2000.

[52] F. Bounini, D. Gingras, H. Pollart, et al. Modified artificial potential field method for
online path planning applications[J]. 2017 IEEE Intelligent Vehicles Symposium (IV),
2017: 180185.

[53] O. Khatib. RealTime Obstacle Avoidance for Manipulators and Mobile Robots[J]. The
International Journal of Robotics Research, 1986.

[54] M. Z. Azmi, T. Ito. Artificial Potential Field with Discrete Map Transformation for Fea
sible Indoor Path Planning[J]. Applied Sciences, 2020, 10: 8789.

75

西北工业大学硕士学位论文

[55] T. Evgeniou,M. Pontil. Support VectorMachines: Theory andApplications[C] Machine
Learning and Its Applications, Advanced Lectures. Leibniz, Germany: Springer, 2001:
249257.

[56] S. Hochreiter, J. Schmidhuber. Long Shortterm Memory[J]. Neural computation, 1997,
9: 173580.

[57] M. Kalos, P. Whitlock. Monte Carlo Method[M]. Weinheim, Germany: Wiley VCH,
2008.

[58] C. Remi, M. Pontil. Efficient Selectivity and Backup Operators in MonteCarlo Tree
Search[C] 5th International Conference on Computer and Games. Turin, Italy: INRIA,
2006.

[59] R. Sutton, D. Mcallester, S. Singh, et al. Policy Gradient Methods for Reinforcement
Learning with Function Approximation[J]. Adv. Neural Inf. Process. Syst, 2000, 12.

[60] C. Daskalakis, D. J. Foster, N. Golowich. Independent Policy GradientMethods for Com
petitive Reinforcement Learning[J]. ArXiv, 2021.

[61] L. Wang, Q. Cai, Z. Yang, et al. Neural Policy Gradient Methods: Global Optimality and
Rates of Convergence[J]. ArXiv, 2019.

[62] M. Ryu, Y. Chow, R. Anderson, et al. CAQL: Continuous Action QLearning[C]
International Conference on Learning Representations. Virtual Conference: ICLR, 2020.

[63] J. Xiong, Q. Wang, Z. Yang, et al. Parametrized Deep QNetworks Learning: Reinforce
ment Learning with DiscreteContinuous Hybrid Action Space[J]. ArXiv, 2018.

[64] T. Lillicrap, J. J. Hunt, A. Pritzel, et al. Continuous control with deep reinforcement
learning[J]. CoRR, 2019.

[65] A. Franceschetti, E. Tosello, N. Castaman, et al. Robotic Arm Control and Task Training
through Deep Reinforcement Learning[J]. ArXiv, 2020.

[66] A. Franceschetti, E. Tosello, N. Castaman, et al. Robotic Arm Control and Task Training
through Deep Reinforcement Learning[J]. ArXiv, 2020.

[67] X. Xing, D. E. Chang. Deep Reinforcement Learning Based Robot Arm Manipulation
with Efficient Training Data through Simulation[C] 2019 19th International Confer
ence on Control, Automation and Systems (ICCAS). Jeju, Korea.: ICCAS, 2019: 112
116.

[68] C. Liu. A MultitaskingOriented Robot Arm Motion Planning Scheme Based on Deep
Reinforcement Learning and Twin SynchroControl.[J]. SensorS, 2020.

[69] S. Li, X. Wang, L. Hu, et al. Mobile robot path planning based on Qlearning algo
rithm*[C] 2019WRCSymposiumonAdvancedRobotics andAutomation (WRCSARA).
Beijing, China: IEEE, 2019.

76

BIBLIOGRAPHY

[70] M. Ji, L. Zhang, S. Wang. A Path Planning Approach Based on Qlearning for Robot
Arm[C] 2019 3rd International Conference onRobotics andAutomation Sciences (ICRAS).
Wuhan, China: ICRAS, 2019: 1519.

[71] A. Zeng, S. Song, J. Lee, et al. TossingBot: Learning to Throw Arbitrary Objects with
Residual Physics[J]. IEEE Transactions on Robotics, 2020.

[72] M. Plappert, M. Andrychowicz, A. Ray, et al. MultiGoal Reinforcement Learning: Chal
lenging Robotics Environments and Request for Research[J]. ArXiv, 2018.

[73] M. Lucchi, F. Zindler, S. MühlbacherKarrer, et al. Robogym – An Open Source Toolkit
for Distributed Deep Reinforcement Learning on Real and Simulated Robots[J]. ArXiv,
2020.

[74] K. P. Hawkins. Analytic InverseKinematics for theUniversal Robots UR5/UR10Arms[J].
SMARTech, December 2013.

[75] H.VanHasselt, A. Guez, D. Silver. DeepReinforcement LearningwithDoubleQlearning[J].
ArXiv, 2015.

[76] T. Kobayashi, W. E. L. Ilboudo. Tsoft update of target network for deep reinforcement
learning[J]. Neural Networks, 2021.

[77] W. Smart, L. Kaelbling. Effective Reinforcement Learning for Mobile Robots[J]. Pro
ceedings IEEE International Conference on Robotics and Automation, 2002, 4.

[78] A. Panov, K. Yakovlev, R. Suvorov. Grid Path Planning with Deep Reinforcement Learn
ing: Preliminary Results[J]. Procedia Computer Science, 2018, 123: 347353.

[79] A. H. Qureshi, M. J. Bency, M. C. Yip. Motion Planning Networks[C] 2019 Interna
tional Conference on Robotics and Automation (ICRA). Montreal, QC, Canada: IEEE,
2019: 21182124.

[80] V.Mnih, K. Kavukcuoglu, D. Silver, et al. Playing Atari with Deep Reinforcement Learn
ing[J]. ArXiv, 2013.

[81] V. Mnih, K. Kavukcuoglu, D. Silver, et al. Humanlevel control through deep reinforce
ment learning[J]. Nature, 2015, 518: 52933.

[82] S. R. Company. Smart Grasping Sandbox[EB OL]. https://github.com/shadowrobot/s
mart_grasping_sandbox. (accessed: 10.20.2020).

[83] E. Coumans, Y. Bai. Pybullet[EB OL]. https://pybullet.org/. (accessed: 01.05.2021).

[84] O. Biza, D.Wang, R.W. Platt, et al. Action Priors for Large Action Spaces in Robotics[J].
ArXiv, 2021.

[85] P. Aumjaud, D. McAuliffe, F. J. RodríguezLera, et al. Reinforcement Learning Exper
iments and Benchmark for Solving Robotic Reaching Tasks[J]. Advances in Physical
Agents II, 2020.

77

西北工业大学硕士学位论文

[86] G. Brockman, V. Cheung, L. Pettersson, et al. OpenAI Gym[J]. ArXiv, 2016.

[87] F. Chollet. Keras[EB OL]. https://github.com/kerasteam/keras. (accessed: 01.17.2021).

[88] M. Abadi, P. Barham, J. Chen, et al. TensorFlow: A system for largescale machine learn
ing[J]. ArXiv, 2016.

[89] W. Fedus, P. Ramachandran, R. Agarwal, et al. Revisiting Fundamentals of Experience
Replay[J]. ArXiv, 2020.

[90] M. Brittain, J. Bertram, X. Yang, et al. Prioritized Sequence Experience Replay[J]. ArXiv,
2019.

78

APPENDIX

Appendix

A.3 Bars plan

79

西北工业大学硕士学位论文

80

ACKNOWLEDGMENT

Acknowledgment

I would like to express my sincere gratitude to my supervisor, Prof associated Wang Ming
Ming for allowing me to work under his supervision. Moreover, I thanks him for providing me
continuous guidance, motivation, endless support, assistance, and feedback throughout the en
tire period of work. The conditions due to the pandemic led to a particular situation of working
but he still managed to make me progress in my research and gave precious advice. The study
wouldn’t have been possible without his help and for that, I thank him very much.

Furthermore, I would like to thank the students of my supervisor who were present to give
me support and advice during my thesis.

I finally thank my family and my friends especially Julien Mellet for the mental support,
the precious guidance, and the help given in every stage of my research.

81

西北工业大学

学位论文知识产权声明书

本人完全了解学校有关保护知识产权的规定，即：研究生在校攻读学位期间论文工作的知识产

权单位属于西北工业大学。学校有权保留并向国家有关部门或机构送交论文的复印件和电子版。本

人允许论文被查阅和借阅。学校可以将本学位论文的全部或部分内容编入有关数据库进行检索，可

以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。同时本人保证，毕业后结合学位论文

研究课题再撰写的文章一律注明作者单位为西北工业大学。

保密论文待解密后适用本声明。

学位论文作者签名 : 指导教师签名 :

年 月 日 年 月 日

– –

西北工业大学

学位论文原创性声明

秉承学校严谨的学风和优良的科学道德，本人郑重声明：所呈交的学位论文，是本人在导师的

指导下进行研究工作所取得的成果。尽我所知，除文中已经注明引用的内容和致谢的地方外，本论

文不包含任何其他个人或集体已经公开发表或撰写过的研究成果，不包含本人或其他已申请学位或

其他用途使用过的成果。对本文的研究做出重要贡献的个人和集体，均已在文中以明确方式表明。

本人学位论文与资料若有不实，愿意承担一切相关的法律责任。

学位论文作者签名 :

年 月 日

